|
基于ICOA-Smith-LADRC的塑料激光焊接压力控制
|
Abstract:
针对塑料激光焊接压力系统的非线性与时滞性特点,引入线性自抗扰控制器和Smith预估器进行控制,同时,为尽可能地提高整定线性自抗扰控制器参数效率和系统控制效果,采用改进的小龙虾算法对其参数进行迭代寻优。改进的内容包括三个方面:首先,针对算法种群多样性不足,初始化种群时采用逻辑映射算法,使得产生的种群更加均匀,提高种群的多样性;其次,为充分利用小龙虾个体维度间的有用信息,提高算法的维间搜索能力,引入纵向交叉策略;最后,为避免结果陷入局部最优,根据迭代次数对每次迭代后的最优个体进行柯西变异或高斯变异,对比变异后的个体与当代最差个体,优胜劣汰。实验结果表明:改进小龙虾算法的Smith-LADRC控制器在塑料激光焊接压力系统上具有更好的控制效果。
Aiming at the nonlinearity and time lag characteristics of the plastic laser welding pressure system, the linear active disturbance controller and Smith predictor are introduced for control, and at the same time, in order to improve the efficiency of the parameter of the rectified linear self-concern controller and the system control effect as much as possible, the improved crayfish algorithm is used to iteratively seek the optimization of its parameters. The improvements include three aspects: first, for the lack of population diversity in the algorithm, a logic mapping algorithm is used to initialize the population, which makes the resulting population more homogeneous and improves the diversity of the population; second, in order to make full use of the useful information between the dimensions of the crayfish individuals and to improve the inter-dimensional search capability of the algorithm, a vertical crossover strategy is introduced; finally, in order to avoid the results from falling into a local optimum, the optimal individual is selected for each time based on the number of iterations. The optimal individual after iteration is subjected to Cauchy’s mutation or Gaussian mutation, Comparing the mutated individuals with the worst contemporary individuals and selecting the better ones. The experimental results show that the Smith-LADRC controller with an improved crayfish algorithm has a better control effect on the plastic laser welding pressure system.
[1] | 陈志, 张婉清, 颜昭君. 塑料激光透射焊接技术的研究动态和发展趋势[J]. 应用激光, 2020, 40(3): 556-563. |
[2] | Gonçalves, L.F.F.F., Duarte, F.M., Martins, C.I. and Paiva, M.C. (2021) Laser Welding of Thermoplastics: An Overview on Lasers, Materials, Processes and Quality. Infrared Physics & Technology, 119, Article ID: 103931. https://doi.org/10.1016/j.infrared.2021.103931 |
[3] | 汪宇其, 李泽源, 李向国, 等. 基于驱控一体的伺服压力机控制系统研究[J]. 机电工程, 2020, 37(4): 438-445. |
[4] | 吕晨悦, 施一萍, 刘瑾, 张金立, 程宗政. CSO-PID算法在空压机控制系统中的应用[J]. 传感器与微系统, 2021, 40(1): 157-160. |
[5] | 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998(1): 19-23. |
[6] | Gao, Z.Q. (2003) Scaling and Bandwidth-Parameterization based Controller Tuning. Annual American Control Conference (ACC 2003), Denver, 4-6 June, 4989-4996 |
[7] | Jia, H., Rao, H., Wen, C. and Mirjalili, S. (2023) Crayfish Optimization Algorithm. Artificial Intelligence Review, 56, 1919-1979. https://doi.org/10.1007/s10462-023-10567-4 |
[8] | Smith, O.J.M. (1959) A Controller to Overcome Deadtime. ISA Journal, 6, 28-33. |
[9] | 唐巍, 陈学允. 混沌理论及其应用研究[J]. 电力系统自动化, 2000(7): 67-70. |
[10] | 徐峰, 李东海, 薛亚丽. 基于ITAE指标的PID参数整定方法比较研究[J]. 中国电机工程学报, 2003(8): 207-211. |