|
Mine Engineering 2025
纯氢管道小孔泄漏规律研究
|
Abstract:
本文聚焦埋地纯氢管道泄漏问题展开研究。氢能作为实现“3060双碳目标”的重要途径,其长距离运输中管道运输优势显著。目前对埋地纯氢管道泄漏研究稀缺,实验成本高且风险大,因此采用Simdroid5.0软件建立泄漏仿真模型。通过以拟建纯氢管道为原型,设置不同泄漏孔径、位置及多种土壤条件参数,结合流体力学控制方程和湍流模型,进行数值模拟。结果表明:随着泄漏孔径增大,泄漏孔周围温度减小;泄漏孔位置不同,氢气扩散速度有差异,朝上时最快,朝下时先在土壤聚集再向上扩散;土壤种类对氢气泄漏扩散影响关键,扩散速度从高到低依次为砂土、壤土、黏土,且粘度阻力系数越小、孔隙率越小,氢气泄漏越快。研究为未来纯氢管道安全输送提供基础支持,但研究存在局限性,如缺乏现场试验与实际测量数据支撑,对土壤条件进行了简化。后续应开展实际试验检测,对比模拟与实际数据,并考虑更多土壤复杂因素,建立更完善的泄漏模型,以促进纯氢管道输氢技术的发展。
This article focuses on the study of leakage problems in buried pure hydrogen pipelines. Hydrogen energy, as an important way to achieve the “3060 dual carbon target”, has significant advantages in pipeline transportation for long-distance transportation. At present, research on the leakage of buried pure hydrogen pipelines is scarce, with high experimental costs and risks. Therefore, Simdroid5.0 software is used to establish a leakage simulation model. By taking the proposed pure hydrogen pipeline as a prototype, setting different leakage aperture, location, and various soil condition parameters, combined with fluid dynamics control equations and turbulence models, numerical simulations were conducted. The results indicate that as the leakage aperture increases, the temperature around the leakage aperture decreases; the diffusion speed of hydrogen varies depending on the location of the leakage hole. It is fastest when facing upwards and first accumulates in the soil before diffusing upwards when facing downwards; the soil type has a crucial impact on the diffusion of hydrogen gas leakage, with the diffusion rate being in the order of sandy soil, loam soil, and clay. Moreover, the smaller the viscosity resistance coefficient and porosity, the faster the hydrogen gas leakage. The research provides basic support for the safe transportation of pure hydrogen pipelines in the future, but there are limitations to the research, such as the lack of on-site testing and actual measurement data support, and simplification of soil conditions. Subsequently, actual experimental testing should be carried out to compare simulated and actual data, and more complex soil factors should be considered to establish a more comprehensive leakage model, in order to promote the development of pure hydrogen pipeline hydrogen transportation technology.
[1] | 张智, 赵苑瑾, 蔡楠. 中国氢能产业技术发展现状及未来展望山, 天然气工业, 2022, 42(5): 156-165. |
[2] | 陈秋阳, 陈云伟. 国际氢能发展战略比较分析[J]. 科学观察, 2022, 17(2): 1-12. |
[3] | 朱建禄, 潘军, 张义祥, 等. 氢混合天然气埋地管道的泄漏与扩散行为[J]. 国际氢能杂志, 2023, 48(8): 4862-4873. |
[4] | 刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势[J]. 油气储运, 2022, 41(5): 498-514. |
[5] | 曹权, 王洪建, 秦业美, 等. 纯氢管道输氢技术发展现状与分析[J]. 力学与实践, 2024, 46(1): 18-27. |
[6] | 何太碧, 何风成, 杜文, 等. 埋地输氢管道泄漏扩散规律研究[J]. 中国测试, 2024, 50(8): 171-179. |
[7] | 罗宗林, 张甜甜, 谭羽非, 等. 土壤-大气耦合下直埋燃气管道泄漏扩散模拟[J]. 煤气与热力, 2021, 41(9): 36-42+44. |
[8] | 朱红钧, 陈泉宇, 陈俊文, 等. 混氢管道小孔泄漏气体的扩散与自燃过程分析[J]. 燃烧科学与技术, 2024, 30(3): 265-276. |
[9] | 常欢, 谭羽非, 王雪梅, 肖榕, 张兴梅. 城市直埋燃气管道泄漏沿土壤扩散模拟研究山[J]. 煤气与热力, 2020, 40(11): 28-34, 42-43. |
[10] | Bu, F., Liu, Y., Liu, Y., Xu, Z., Chen, S., Jiang, M., et al. (2021) Leakage Diffusion Characteristics and Harmful Boundary Analysis of Buried Natural Gas Pipeline under Multiple Working Conditions. Journal of Natural Gas Science and Engineering, 94, Article ID: 104047. https://doi.org/10.1016/j.jngse.2021.104047 |
[11] | Kodoth, M., Aoyama, S., Sakamoto, J., Kasai, N., Khalil, Y., Shibutani, T., et al. (2020) Leak Frequency Analysis for Hydrogen-Based Technology Using Bayesian and Frequentist Methods. Process Safety and Environmental Protection, 136, 148-156. https://doi.org/10.1016/j.psep.2020.01.025 |
[12] | 顾蒙, 王全国, 王溪舸, 等. 油氢合建站氢气泄漏扩散模拟及影响因素分析[J]. 消防科学与技术, 2020, 39(1): 123-126. |
[13] | 胡玮鹏, 陈光, 齐宝金, 等. 埋地纯氢/掺氢天然气管道泄漏扩散数值模拟[J]. 油气储运, 2023, 42(10): 1118-1127, 1136. |
[14] | 刘自亮, 熊思江, 花争立, 等. 埋地输氢管道泄漏爆炸事故后果模拟分析[J]. 中国安全生产科学技术, 2019, 15(12): 94-100. |
[15] | Zhou, Z., Tan, J., Zhang, J., Huang, X. and Wu, D. (2020) High Pressure Buried Gas Pipeline Leakage Temperature Drop Testing and Theory Analysis. Numerical Heat Transfer, Part A. Application, 78, 18-28. https://doi.org/10.1080/10407782.2020.1769437 |
[16] | Liu, Z., Xiu, Z., Zhao, Y., Li, M., Li, P., Cai, P., et al. (2023) Experimental Study on the Leakage Temperature Field of Buried CO2 Pipelines. Environmental Science and Pollution Research, 30, 70288-70302. https://doi.org/10.1007/s11356-023-27289-3 |
[17] | 喻健良, 于帅, 闫兴清, 等. 超临界CO2埋地管道泄漏土壤形貌及温度研究[J]. 安全与环境学报, 2021, 21(5): 1963-1970. |