全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

日本海神蛤壳修复过程中外套膜组织的转录组特征解析
Transcriptomic Profiling of Mantle Tissue in Panopea japonica during Shell Repair

DOI: 10.12677/ams.2025.121006, PP. 50-61

Keywords: 日本海神蛤,外套膜,RNA-Seq,生物矿化
Panopea japonica
, Mantle, RNA-Seq, Biomineralization

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究日本海神蛤壳体破损后外套膜修复组织与正常外套膜组织的差异,本研究利用转录组测序技术(RNA-Seq)及生物信息学分析方法,比较分析外套膜修复组织(A4Y1)、外套膜外部组织(A4Wa1)和外套膜内部组织(A4Wb1)转录组。结果显示,在三种外套膜组织中共筛选出1864个差异表达基因(DEGs) (筛选条件:p.adj < 0.05且|log2FoldChange| ≥ 1)。其中,A4Wa1与A4Y1中上调表达基因807个,下调表达基因598个;A4Wb1与A4Y1中上调表达基因678个,下调表达基因563;A4Wa1与A4Wb1中上调表达基因44,下调表达基因142。GO和KEGG富集分析显示,这些差异基因显著富集于生物矿化和免疫相关的通路中。且相关基因在修复组织中表达水平较高。这些结果显示,三种外套膜组织在生物矿化和免疫功能方面存在显著差异,这可能与日本海神蛤壳体修复机制密切相关。本研究为深入探讨日本海神蛤外套膜功能提供了数据支持,同时为其他软体生物外套膜的研究提供了参考。
To investigate the differences between mantle repair tissue and normal mantle tissue of Panopea japonica following shell damage, this study employed RNA-Seq and bioinformatics analysis to compare the transcriptomes of mantle repair tissue (A4Y1), external mantle tissue (A4Wa1), and internal mantle tissue (A4Wb1). A total of 1864 differentially expressed genes (DEGs) were identified across the three types of mantle tissues (selection criteria: p.adj < 0.05 and |log2FoldChange| ≥ 1). Among these, 807 upregulated and 598 downregulated genes were found in A4Wa1 vs. A4Y1, 678 upregulated and 563 downregulated genes in A4Wb1 vs. A4Y1, and 44 upregulated and 142 downregulated genes in A4Wa1 vs. A4Wb1. GO and KEGG enrichment analyses revealed significant enrichment of these DEGs in pathways associated with biomineralization and immunity, with higher expression levels in repair tissues. These findings indicate that the three mantle tissue types exhibit significant differences in biomineralization and immune functions, which are likely linked to the shell repair mechanisms of P. japonica. This study provides data support for further exploration of mantle functions in P. japonica and serves as a reference for research on mantles in other mollusks.

References

[1]  Lee, C., Baik, K. and Hong, K. (1998) Ecological Studies on the Habitat of Geoduck Clam, Panope Japonica. Journal of Aquaculture, 11, 105-111.
[2]  齐钟彦, 马绣同. 黄渤海的软体动物[M]. 北京: 农业出版社, 1989.
[3]  李春艳, 阎磊, 王品虹, 等. 日本海神蛤营养成分分析与评价[J]. 营养学报, 2008(1): 113-114, 116.
[4]  霍忠明, 赵雯, 肖友翔, 等. 日本海神蛤人工繁殖及早期生长发育[J]. 水产学报, 2021, 45(2): 235-245.
[5]  Vaughn, C.C. and Hoellein, T.J. (2018) Bivalve Impacts in Freshwater and Marine Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 49, 183-208.
https://doi.org/10.1146/annurev-ecolsys-110617-062703
[6]  张玺, 齐钟彦. 贝类学纲要[M]. 北京: 科学出版社, 1961.
[7]  Audino, J.A. and Marian, J.E.A.R. (2016) On the Evolutionary Significance of the Mantle Margin in Pteriomorphian bivalves. American Malacological Bulletin, 34, 148-159.
https://doi.org/10.4003/006.034.0212
[8]  Freer, A., Bridgett, S., Jiang, J. and Cusack, M. (2013) Biomineral Proteins from Mytilus edulis Mantle Tissue Transcriptome. Marine Biotechnology, 16, 34-45.
https://doi.org/10.1007/s10126-013-9516-1
[9]  Marie, B., Joubert, C., Tayalé, A., Zanella-Cléon, I., Belliard, C., Piquemal, D., et al. (2012) Different Secretory Repertoires Control the Biomineralization Processes of Prism and Nacre Deposition of the Pearl Oyster Shell. Proceedings of the National Academy of Sciences of the United States of America, 109, 20986-20991.
https://doi.org/10.1073/pnas.1210552109
[10]  Yue, X., Zhang, S., Wang, H., Yu, J., Peng, Q., McFall-Ngai, M., et al. (2022) The Mud-Dwelling Clam Meretrix petechialis Secretes Endogenously Synthesized Erythromycin. Proceedings of the National Academy of Sciences of the United States of America, 119, e2214150119.
https://doi.org/10.1073/pnas.2214150119
[11]  Huang, J., Li, S., Liu, Y., Liu, C., Xie, L. and Zhang, R. (2018) Hemocytes in the Extrapallial Space of Pinctada fucata Are Involved in Immunity and Biomineralization. Scientific Reports, 8, Article No. 4657.
https://doi.org/10.1038/s41598-018-22961-y
[12]  Yu, J., Zhang, L., Li, Y., Li, R., Zhang, M., Li, W., et al. (2017) Genome-Wide Identification and Expression Profiling of the SOX Gene Family in a Bivalve Mollusc Patinopecten yessoensis. Gene, 627, 530-537.
https://doi.org/10.1016/j.gene.2017.07.013
[13]  Saruwatari, K., Matsui, T., Mukai, H., Nagasawa, H. and Kogure, T. (2009) Nucleation and Growth of Aragonite Crystals at the Growth Front of Nacres in Pearl Oyster, Pinctada fucata. Biomaterials, 30, 3028-3034.
https://doi.org/10.1016/j.biomaterials.2009.03.011
[14]  Okada, Y., Yamaura, K., Suzuki, T., Itoh, N., Osada, M. and Takahashi, K.G. (2013) Molecular Characterization and Expression Analysis of Chitinase from the Pacific Oyster Crassostrea gigas. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 165, 83-89.
https://doi.org/10.1016/j.cbpb.2013.03.008
[15]  Malaguarnera, L., Rosa, M.D., Zambito, A.M., dell’Ombra, N., Marco, R.D. and Malaguarnera, M. (2006) Potential Role of Chitotriosidase Gene in Nonalcoholic Fatty Liver Disease Evolution. The American Journal of Gastroenterology, 101, 2060-2069.
https://doi.org/10.1111/j.1572-0241.2006.00680.x
[16]  Levi-Kalisman, Y., Falini, G., Addadi, L. and Weiner, S. (2001) Structure of the Nacreous Organic Matrix of a Bivalve Mollusk Shell Examined in the Hydrated State Using Cryo-TEM. Journal of Structural Biology, 135, 8-17.
https://doi.org/10.1006/jsbi.2001.4372
[17]  Du, X., Fan, G., Jiao, Y., Zhang, H., Guo, X., Huang, R., et al. (2017) The Pearl Oyster Pinctada fucata martensii Genome and Multi-Omic Analyses Provide Insights into Biomineralization. GigaScience, 6, gix059.
https://doi.org/10.1093/gigascience/gix059
[18]  Suzuki, M., Saruwatari, K., Kogure, T., Yamamoto, Y., Nishimura, T., Kato, T., et al. (2009) An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation. Science, 325, 1388-1390.
https://doi.org/10.1126/science.1173793
[19]  Mátés, L., Korpos, É., Deák, F., Liu, Z., R. Beier, D., Aszódi, A., et al. (2002) Comparative Analysis of the Mouse and Human Genes (Matn2 and MATN2) for Matrilin-2, a Filament-Forming Protein Widely Distributed in Extracellular Matrices. Matrix Biology, 21, 163-174.
https://doi.org/10.1016/s0945-053x(01)00194-9
[20]  Thurmond, R.L., Gelfand, E.W. and Dunford, P.J. (2008) The Role of Histamine H1 and H4 Receptors in Allergic Inflammation: The Search for New Antihistamines. Nature Reviews Drug Discovery, 7, 41-53.
https://doi.org/10.1038/nrd2465
[21]  Castellan Baldan, L., Williams, K.A., Gallezot, J., Pogorelov, V., Rapanelli, M., Crowley, M., et al. (2014) Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice. Neuron, 81, 77-90.
https://doi.org/10.1016/j.neuron.2013.10.052
[22]  Hill, S.J. (1990) Distribution, Properties, and Functional Characteristics of Three Classes of Histamine Receptor. Pharmacological Reviews, 42, 45-83.
https://doi.org/10.1016/s0031-6997(25)00039-0
[23]  Jones, B.L. and Kearns, G.L. (2010) Histamine: New Thoughts about a Familiar Mediator. Clinical Pharmacology & Therapeutics, 89, 189-197.
https://doi.org/10.1038/clpt.2010.256
[24]  Kitakaze, M. (2016) Clinical Evidence of the Role of Histamine in Heart Failure. Journal of the American College of Cardiology, 67, 1553-1555.
https://doi.org/10.1016/j.jacc.2016.01.046
[25]  Yang, X.D., Ai, W., Asfaha, S., Bhagat, G., Friedman, R.A., Jin, G., et al. (2010) Histamine Deficiency Promotes Inflammation-Associated Carcinogenesis through Reduced Myeloid Maturation and Accumulation of CD11b+Ly6G+ Immature Myeloid Cells. Nature Medicine, 17, 87-95.
https://doi.org/10.1038/nm.2278
[26]  Salmi, M. and Jalkanen, S. (1992) A 90-Kilodalton Endothelial Cell Molecule Mediating Lymphocyte Binding in Humans. Science, 257, 1407-1409.
https://doi.org/10.1126/science.1529341
[27]  Dunkel, J., Aguilar‐Pimentel, J.A., Ollert, M., Fuchs, H., Gailus‐Durner, V., de Angelis, M.H., et al. (2014) Endothelial Amine Oxidase AOC3 Transiently Contributes to Adaptive Immune Responses in the Airways. European Journal of Immunology, 44, 3232-3239.
https://doi.org/10.1002/eji.201444563
[28]  Yao, H., Cui, B., Li, X., Lin, Z. and Dong, Y. (2020) Characteristics of a Novel Tyrosinase Gene Involved in the Formation of Shell Color in Hard Clam Meretrix meretrix. Journal of Ocean University of China, 19, 183-190.
https://doi.org/10.1007/s11802-020-4202-1
[29]  Sun, X., Yang, A., Wu, B., Zhou, L. and Liu, Z. (2015) Characterization of the Mantle Transcriptome of Yesso Scallop (Patinopecten yessoensis): Identification of Genes Potentially Involved in Biomineralization and Pigmentation. PLOS ONE, 10, e0122967.
https://doi.org/10.1371/journal.pone.0122967
[30]  Chen, X., Liu, X., Bai, Z., Zhao, L. and Li, J. (2017) HcTyr and HcTyp-1 of Hyriopsis Cumingii, Novel Tyrosinase and Tyrosinase-Related Protein Genes Involved in Nacre Color Formation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 204, 1-8.
https://doi.org/10.1016/j.cbpb.2016.11.005
[31]  Kamiya, H., Muramoto, K. and Yamazaki, M. (1986) Aplysianin-A, an Antibacterial and Antineoplastic Glycoprotein in the Albumen Gland of a Sea Hare, Aplysia kurodai. Experientia, 42, 1065-1067.
https://doi.org/10.1007/bf01940736
[32]  Jimbo, M., Nakanishi, F., Sakai, R., Muramoto, K. and Kamiya, H. (2003) Characterization of L-Amino Acid Oxidase and Antimicrobial Activity of Aplysianin A, a Sea Hare-Derived Antitumor-Antimicrobial Protein. Fisheries Science, 69, 1240-1246.
https://doi.org/10.1111/j.0919-9268.2003.00751.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133