全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

凡纳滨对虾养殖水体悬浮颗粒物特征的初步研究
A Preliminary Study on the Sources and Influencing Factors of Suspended Particulate Matter in the Cultivation Process of Litopenaeus vannamei

DOI: 10.12677/ams.2025.121005, PP. 37-49

Keywords: 凡纳滨对虾,悬浮颗粒物,曝气量,曝气方式
Litopenaeus vannamei
, Suspended Particulate Matter, Aeration Volume, Aeration Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究凡纳滨对虾养殖水体悬浮颗粒物的产生及发展规律,本试验对养殖过程中悬浮颗粒物的主要来源,以及曝气量和曝气方式对悬浮颗粒物数量的影响进行研究,旨在减少在养殖过程中悬浮颗粒物对水质的影响,解决浓度过高而降低凡纳滨对虾的成活率从而影响养殖效益的问题。在室内水温26℃~28℃,盐度为30的条件下,进行了3个试验,1) 投放30尾凡纳滨对虾仔虾(A1)、不投放凡纳滨对虾(B1);2) 均采用气石曝气的条件下,曝气量8 ml/s (A2)、16 ml/s (B2)、24 ml/s (C2)、32 ml/s (D2);3) 曝气量均为24 ml/s的条件下,气石曝气(A3)、微孔纳米管曝气(B3)、文丘里射流器曝气(C3)。试验时间均为30 d,结果表明:在实验过程中A1、B1两组悬浮颗粒物、溶解氧(DO)、总氨氮(TAN)和亚硝酸氮()浓度均有显著性差异(P < 0.05),养殖后期A1组悬浮颗粒物、TAN和浓度最大值分别为(667.3 ± 16.7) mg/L、(1.18 ± 0.08) mg/L和(0.52 ± 0.04) mg/L,DO最小值为(4.76 ± 0.08) mg/L;试验结束时C2组的悬浮颗粒物、TAN和浓度均显著低于A1组(P < 0.05),最小值分别为(512.3 ± 53.3) mg/L、(1.33 ± 0.15) mg/L和(0.37 ± 0.04) mg/L,溶解氧最小值为(5.31 ± 0.11);试验后期B3组的悬浮颗粒物、TAN和浓度均显著低于C3组(P < 0.05),最小值分别为(536 ± 36.77) mg/L、(1.62 ± 0.02) mg/L和(0.50 ± 0.04) mg/L,溶解氧最小值为(5.31 ± 0.11)。本试验条件下,发现约有80.24%的悬浮颗粒物来自凡纳滨对虾的生长代谢,选择24 mg/L的曝气量和微孔纳米管作为曝气设备能有效地减少悬浮颗粒物的产生,控制凡纳滨对虾养殖过程中的水质。
In order to explore the generation and development law of suspended particulates in the aquaculture water of Litopenaeus vannamei, this experiment studied the main sources of suspended particulates in the aquaculture process, as well as the influence of aeration rate and aeration method on the number of suspended particulates, aiming to reduce the impact of suspended particulates on water quality in the aquaculture process and solve the problem that high concentration reduces the survival rate of Litopenaeus vannamei and affects the efficiency of breeding. Under the conditions of indoor water temperature of 26?C~28?C and salinity of 30, three experiments were carried out: 1) Put 30 Litopenaeus vannamei in the tank (A1) and not with Litopenaeus vannamei (B1); 2) Under the condition of aeration of air stone, the aeration volume is 8 ml/s (A2), 16 ml/s (B2), 24 ml/s (C2) and 32 ml/s (D2); 3) Under the condition that the aeration volume is 24 ml/s, aerated by gas stone (A3), aeration of microporous nanotubes (B3), and aeration of Venturi jet (C3). The test time was 30 days, and the results showed that

References

[1]  麦贤杰, 黄伟健, 叶富良. 对虾健康养殖学[M]. 北京: 海洋出版社, 2009: 6-7.
[2]  Wang, Q., Yu, Y., Yuan, J., Zhang, X., Huang, H., Li, F., et al. (2017) Effects of Marker Density and Population Structure on the Genomic Prediction Accuracy for Growth Trait in Pacific White Shrimp Litopenaeus vannamei. BMC Genetics, 18, Article No. 45.
https://doi.org/10.1186/s12863-017-0507-5
[3]  索建杰, 王玉玮, 姜玉声, 等. 三种凡纳滨对虾养殖模式的水质特征及养殖效果[J]. 水产学杂志, 2015, 28(5): 12-17.
[4]  中华人民共和国农业农村部. 2024中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2024.
[5]  牛江波, 吴赵军, 李亚松, 等. 循环水养殖模式对凡纳滨对虾养殖水质及生长性能的影响[J]. 渔业研究, 2023, 45(3): 287-296.
[6]  Chen, S., Timmons, M.B., Bisogni, J.J. and Aneshansley, D.J. (1994) Modeling Surfactant Removal in Foam Fractionation: II—Experimental Investigations. Aquacultural Engineering, 13, 183-200.
https://doi.org/10.1016/0144-8609(94)90002-7
[7]  Wong, C.K., Pak, I.A.P. and Jiang Liu, X. (2012) Gill Damage to Juvenile Orange-Spotted Grouper Epinephelus Coioides (Hamilton, 1822) Following Exposure to Suspended Sediments. Aquaculture Research, 44, 1685-1695.
https://doi.org/10.1111/j.1365-2109.2012.03173.x
[8]  Yuvanatemiya, V. and Boyd, C.E. (2006) Physical and Chemical Changes in Aquaculture Pond Bottom Soil Resulting from Sediment Removal. Aquacultural Engineering, 35, 199-205.
https://doi.org/10.1016/j.aquaeng.2006.02.001
[9]  Papageorgiou, N., Kalantzi, I. and Karakassis, I. (2010) Effects of Fish Farming on the Biological and Geochemical Properties of Muddy and Sandy Sediments in the Mediterranean Sea. Marine Environmental Research, 69, 326-336.
https://doi.org/10.1016/j.marenvres.2009.12.007
[10]  Zhu, S. and Chen, S. (2001) Effects of Organic Carbon on Nitrification Rate in Fixed Film Biofilters. Aquacultural Engineering, 25, 1-11.
https://doi.org/10.1016/s0144-8609(01)00071-1
[11]  Davidson, J. and Summerfelt, S.T. (2005) Solids Removal from a Coldwater Recirculating System—Comparison of a Swirl Separator and a Radial-Flow Settler. Aquacultural Engineering, 33, 47-61.
https://doi.org/10.1016/j.aquaeng.2004.11.002
[12]  Kroupova, H., Machova, J., Piackova, V., Blahova, J., Dobsikova, R., Novotny, L., et al. (2008) Effects of Subchronic Nitrite Exposure on Rainbow Trout (Oncorhynchus mykiss). Ecotoxicology and Environmental Safety, 71, 813-820.
https://doi.org/10.1016/j.ecoenv.2008.01.015
[13]  季明东. 海水循环水养殖系统悬浮颗粒物去除机制及其粒径分布特征研究[D]: [博士学位论文]. 杭州: 浙江大学, 2020.
[14]  张乐平. 电絮凝对水产养殖水体悬浮颗粒物去除的增强效应研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2023.
[15]  胡艺萱, 刘鹰, 任效忠, 等. 基于流态的方形圆弧角养殖池进水系统优化数值研究[J]. 水产学报, 2023, 47(5): 180-191.
[16]  叶继良, 孙大川, 谭洪新, 等. 不同剪切力对生物絮团粒径及其水处理效果的影响[J]. 上海海洋大学学报, 2021, 30(4): 691-701.
[17]  吉泽坤, 刘晃, 崔铭超, 等. 颗粒特性对矩形养殖舱中颗粒物去除效果的影响[J]. 上海海洋大学学报, 2023, 32(5): 1068-1079.
[18]  全国海洋标准化技术委员会. 海洋监测规范: 第4部分海水分析: GB17378.4-2007 [M]. 北京: 中国标准出版社, 2008.
[19]  雷衍之. 养殖水环境化学实验[M]. 北京: 中国农业出版社, 2006: 26-85.
[20]  梁则优. 基于物理过滤的池塘圈养尾水处理研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2023.
[21]  罗静波, 曹志华, 蔡太锐, 等. 氨氮对克氏原螯虾幼虾的急性毒性研究[J]. 长江大学学报(自科版): 中旬, 2006, 3(4): 183-185.
[22]  黄翔鹄, 李长玲, 郑莲, 等. 亚硝酸盐氮对凡纳滨对虾毒性和抗病相关因子影响[J]. 水生生物学报, 2006, 30(4): 466-471.
[23]  杨光琅. 三峡库区干流回水对支流水华和沉积物的影响[D]: [硕士学位论文]. 重庆: 西南大学, 2024.
[24]  黄卫. 水产养殖池塘溶氧知识[J]. 农业知识, 2021(3): 34-35.
[25]  李健, 陈钊, 常志强, 等. 海水养殖池塘营养物质转化与多营养层次生态养殖[J]. 水生生物学报, 2024, 48(12): 2155.
[26]  石晓理. 凡纳滨对虾养殖池塘水质对浮游植物和表层底泥微生物多样性影响研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2024.
[27]  李亚群. 水产养殖环境污染问题及其控制对策研究[J]. 农村科学实验, 2024(1): 174-176.
[28]  蔡世涛, 王成端, 徐庆元, 等. 无砾石微孔管地下渗滤系统试验研究[J]. 环境科学与技术, 2011, 34(3): 98-101.
[29]  韩永望, 李健, 潘鲁青, 刘德月. 微孔管增氧和气石增氧对凡纳滨对虾室内养殖影响的比较研究[J]. 中国海洋大学学报(自然科学版), 2012, 42(4): 41-47.
[30]  徐其建. 饵料及培养方式对龟足人工培育幼体摄食和生长的影响[D]: [硕士学位论文]. 福州: 福建师范大学, 2021.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133