全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高速列车动态密封性能研究
Research on Dynamic Sealing Performance of High-Speed Trains

DOI: 10.12677/ijm.2025.141001, PP. 1-10

Keywords: 高速列车,舒适性,气密性,隧道,一维数值计算
High Speed Train
, Comfort, Airtightness, Tunnel, One-Dimensional Numerical Calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

高速动车组通过隧道时,车外会产生较大的压力波动,传入车内引起车内压力变化,进而引起司乘人员耳鸣、耳膜疼痛甚至破裂,带来耳感舒适性问题。司乘人员舒适性主要影响因素有车内压力变化、车体动态气密性、人员对压力变化的生理反映特点以及人员经历压力变化次数与时间长短等。在高速动车组设计中,主要通过采用气密车体和密封结构来抑制车内压力波动,以保证司乘人员舒适性。本文介绍了不同国家时间常数模型定义方法,通过采用一维程序计算,分析了单列动车组通过隧道时车内外压力变化规律以及不同隧道长度、不同列车速度对车内外压力影响,研究了单列动车组通过隧道时的车体气密性,进一步对认识动态气密性有较大帮助。
When high-speed trains pass through tunnels, there will be significant pressure fluctuations outside the train, which can cause changes in pressure inside the train, leading to tinnitus, ear pain, and even rupture of the driver and passengers, resulting in ear comfort issues. The main factors affecting the comfort of drivers and passengers include changes in interior pressure, dynamic airtightness of the vehicle, physiological response characteristics of personnel to pressure changes, and the frequency and duration of pressure changes experienced by personnel. In the design of high-speed trains, the main approach is to use airtight bodies and sealed structures to suppress pressure fluctuations inside the train and ensure the comfort of drivers and passengers. This article introduces the definition methods of time constant models in different countries. By using one-dimensional programs to calculate, it analyzes the changes in pressure inside and outside the train when a single train unit passes through a tunnel, as well as the effects of different tunnel lengths and train speeds on the pressure inside and outside the train. The study of the airtightness of single-unit trains passing through tunnels is greatly helpful for understanding dynamic airtightness.

References

[1]  梅元贵, 等. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
[2]  田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2006.
[3]  Derkowski, P., Clark, S., Sturt, R., et al. (2015) High-Speed Rail Aerodynamic Assessment and Mitigation Report.
[4]  小澤智. トンネル内の圧力波の変形とトンネル出口微気圧波[J]. 日本流体力学会誌「ながれ」, 1995, 14(3): 191-197.
[5]  Ehrendorfer, K. and Sockel, H. (1997) The Influence of Measures near the Portal of Railway Tunnels on the Sonic Boom. In: BHR Group Conference Series Publication, Mechanical Engineering Publications Limited, Vol. 27, 863-876.
[6]  Ehrendorfer, K., Reiterer, M. and Sockel, H. (2002) Numerical Investigation of the Micro Pressure Wave. In: Schulte-Werning, B., et al., Eds., TRANSAERO, Springer, 321-341.
https://doi.org/10.1007/978-3-540-45854-8_26
[7]  Uystepruyst, D., William-Louis, M. and Monnoyer, F. (2013) 3D Numerical Design of Tunnel Hood. Tunnelling and Underground Space Technology, 38, 517-525.
https://doi.org/10.1016/j.tust.2013.08.008
[8]  Degen, K.G., Gerbig, C. and Onnich, H. (2007) Acoustic Assessment of Micro-Pressure Waves Radiating from Tunnel Exits of DB High-Speed Lines. Noise and Vibration Mitigation for Rail Transportation Systems: Proceedings of the 9th International Workshop on Railway Noise, Munich, 4-8 September 2007, 48-55.
https://doi.org/10.1007/978-3-540-74893-9_7
[9]  Saito, S. (2024) Alleviation of Micro-Pressure Waves Radiated from Tunnel Hoods. Tunnelling and Underground Space Technology, 147, Article ID: 105703.
https://doi.org/10.1016/j.tust.2024.105703
[10]  王维洲, 钟登朝, 胖涛, 等. 400km/h高速铁路隧道洞口等截面无开孔扩大型缓冲结构气动效应分析[J]. 高速铁路技术, 2021, 12(5): 57-61.
[11]  刘希贤, 郭安宁, 梅元贵, 等. 高速铁路复线隧道内压力波特性的数值模拟研究[J]. 铁道科学与工程学报, 2015, 12(1): 20-27.
[12]  Wang, H., Vardy, A.E. and Pokrajac, D. (2016) Perforated Tunnel Exit Regions and Micro-Pressure Waves: Geometrical Influence. Proceedings of the Institution of Civil EngineersEngineering and Computational Mechanics, 169, 70-85.
https://doi.org/10.1680/jencm.15.00026
[13]  Li, W., Liu, T., Huo, X., Chen, Z., Guo, Z. and Li, L. (2019) Influence of the Enlarged Portal Length on Pressure Waves in Railway Tunnels with Cross-Section Expansion. Journal of Wind Engineering and Industrial Aerodynamics, 190, 10-22.
https://doi.org/10.1016/j.jweia.2019.03.031
[14]  Lin, T., Yang, M., Zhang, L., Wang, T. and Zhong, S. (2024) Influence of Bionics Shark Gills Tunnel Portal on the Micro-Pressure Wave at the Tunnel Exit. Tunnelling and Underground Space Technology, 144, Article ID: 105542.
https://doi.org/10.1016/j.tust.2023.105542
[15]  Doi, T., Ogawa, T., Masubuchi, T. and Kaku, J. (2010) Development of an Experimental Facility for Measuring Pressure Waves Generated by High-Speed Trains. Journal of Wind Engineering and Industrial Aerodynamics, 98, 55-61.
https://doi.org/10.1016/j.jweia.2009.09.002
[16]  李明, 张雷, 刘斌, 等. 动静态气密性分析方法及其在动车组上的应用[J]. 力学学报, 2021, 53(1): 126-135.
[17]  Liu, T., Chen, M., Chen, X. et al. (2019) Field Test Measurement of the Dynamic Tightness Performance of High-Speed Trains and Study on Its Influencing Factors. Measurement, 138, 602-613.
https://doi.org/10.1016/j.measurement.2019.02.051

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133