全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

玄武岩中二氧化碳原位矿化封存:机遇和挑战
In-Situ Mineralization and Storage of Carbon Dioxide in Basalt: Opportunities and Challenges

DOI: 10.12677/aep.2025.153034, PP. 277-287

Keywords: 玄武岩,二氧化碳,原位矿化,碳封存
Basalt
, Carbon Dioxide, In-Situ Mineralization, Carbon Sequestration

Full-Text   Cite this paper   Add to My Lib

Abstract:

CO2的过量排放带来了严重的环境问题,CO2封存技术作为CCUS技术的重要环节,可以减少大气中的CO2含量,从而有效减缓全球气候变暖。本文综述了二氧化碳在玄武岩中封存的机理和技术挑战,进一步了解玄武岩的矿物成分和固碳机理,介绍了世界上已有的玄武岩CO2封存工程冰岛CarbFix示范项目,探讨了玄武岩CO2原位矿化封存存在的若干问题及面对的挑战,得出玄武岩CO2原位矿化封存相比于常规的封存技术,具有促进碳矿化、封存效果持久、安全以及较大的封存容量等显著优点,为推动该领域进一步发展提供理论指导。
The excessive emission of CO2 has brought serious environmental problems. As an important part of CCUS technology, CO2 storage technology can reduce the CO2 content in the atmosphere, effectively suppressing global climate change. This article summarizes the mechanism and technical challenges of carbon dioxide sequestration in basalt, further understanding the mineral composition and carbon sequestration mechanism of basalt. It introduces the CarbFix demonstration project of basalt CO2 sequestration in Iceland, discusses several issues and challenges faced by in-situ mineralization sequestration of basalt CO2, and concludes that compared with conventional sequestration technologies, in-situ mineralization sequestration of basalt CO2 has obvious advantages such as promoting carbon mineralization, long-term and safe sequestration effects, and large sequestration capacity, providing theoretical guidance for further development in this field.

References

[1]  秦积舜, 李永亮, 吴德彬, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1): 20-28.
[2]  高志豪, 夏菖佑, 廖松林, 等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报, 2023, 29(1): 66-75.
[3]  Assima, G.P., Larachi, F., Molson, J. and Beaudoin, G. (2014) Impact of Temperature and Oxygen Availability on the Dynamics of Ambient CO2 Mineral Sequestration by Nickel Mining Residues. Chemical Engineering Journal, 240, 394-403.
https://doi.org/10.1016/j.cej.2013.12.010
[4]  Sanna, A., Uibu, M., Caramanna, G., Kuusik, R. and Maroto-Valer, M.M. (2014) A Review of Mineral Carbonation Technologies to Sequester CO2. Chemical Society Reviews, 43, 8049-8080.
https://doi.org/10.1039/c4cs00035h
[5]  Kelemen, P., Benson, S.M., Pilorgé, H., Psarras, P. and Wilcox, J. (2019) An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 1, Article 9.
https://doi.org/10.3389/fclim.2019.00009
[6]  Matter, J.M., Broecker, W.S., Stute, M., Gislason, S.R., Oelkers, E.H., Stefánsson, A., et al. (2009) Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot Project, Iceland. Energy Procedia, 1, 3641-3646.
https://doi.org/10.1016/j.egypro.2009.02.160
[7]  Gislason, S.R. and Oelkers, E.H. (2003) Mechanism, Rates, and Consequences of Basaltic Glass Dissolution: II. An Experimental Study of the Dissolution Rates of Basaltic Glass as a Function of Ph and Temperature. Geochimica et Cosmochimica Acta, 67, 3817-3832.
https://doi.org/10.1016/s0016-7037(03)00176-5
[8]  Power, I.M., Wilson, S. and Dipple, G.M. (2013) Serpentinite Carbonation for CO2 Sequestration. Elements, 9, 115-121.
https://doi.org/10.2113/gselements.9.2.115
[9]  Liu, M., Asgar, H., Seifert, S. and Gadikota, G. (2020) Novel Aqueous Amine Looping Approach for the Direct Capture, Conversion and Storage of CO2 to Produce Magnesium Carbonate. Sustainable Energy & Fuels, 4, 1265-1275.
https://doi.org/10.1039/c9se00316a
[10]  Santos, R.M., Knops, P.C.M., Rijnsburger, K.L. and Chiang, Y.W. (2016) CO2 Energy Reactor—Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization. Frontiers in Energy Research, 4, Article 5.
https://doi.org/10.3389/fenrg.2016.00005
[11]  Goldberg, D.S., Takahashi, T. and Slagle, A.L. (2008) Carbon Dioxide Sequestration in Deep-Sea Basalt. Proceedings of the National Academy of Sciences, 105, 9920-9925.
https://doi.org/10.1073/pnas.0804397105
[12]  张舟, 张宏福. 基性、超基性岩: 二氧化碳地质封存的新途径[J]. 地球科学(中国地质大学学报), 2012, 37(1): 156-162.
[13]  Snæbjörnsdóttir, S.Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S.R. and Oelkers, E.H. (2020) Carbon Dioxide Storage through Mineral Carbonation. Nature Reviews Earth & Environment, 1, 90-102.
https://doi.org/10.1038/s43017-019-0011-8
[14]  Gislason, S.R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir, H., et al. (2010) Mineral Sequestration of Carbon Dioxide in Basalt: A Pre-Injection Overview of the CarbFix Project. International Journal of Greenhouse Gas Control, 4, 537-545.
https://doi.org/10.1016/j.ijggc.2009.11.013
[15]  McGrail, B.P., Schaef, H.T., Ho, A.M., Chien, Y., Dooley, J.J. and Davidson, C.L. (2006) Potential for Carbon Dioxide Sequestration in Flood Basalts. Journal of Geophysical Research: Solid Earth, 111, B12201.
https://doi.org/10.1029/2005jb004169
[16]  Kelemen, P.B. and Matter, J. (2008) In situ Carbonation of Peridotite for CO2 Storage. Proceedings of the National Academy of Sciences, 105, 17295-17300.
https://doi.org/10.1073/pnas.0805794105
[17]  Matter, J.M. and Kelemen, P.B. (2009) Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nature Geoscience, 2, 837-841.
https://doi.org/10.1038/ngeo683
[18]  Matter, J.M., Broecker, W.S., Stute, M., Gislason, S.R., Oelkers, E.H., Stefánsson, A., et al. (2009) Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot Project, Iceland. Energy Procedia, 1, 3641-3646.
https://doi.org/10.1016/j.egypro.2009.02.160
[19]  Takaya, Y., Nakamura, K. and Kato, Y. (2013) Geological, Geochemical and Social-Scientific Assessment of Basaltic Aquifers as Potential Storage Sites for CO2. Geochemical Journal, 47, 385-396.
https://doi.org/10.2343/geochemj.2.0255
[20]  Snæbjörnsdóttir, S.Ó., Oelkers, E.H., Mesfin, K., Aradóttir, E.S., Dideriksen, K., Gunnarsson, I., et al. (2017) The Chemistry and Saturation States of Subsurface Fluids during the in Situ Mineralisation of CO2 and H2S at the CarbFix Site in SW-Iceland. International Journal of Greenhouse Gas Control, 58, 87-102.
https://doi.org/10.1016/j.ijggc.2017.01.007
[21]  Xiong, W., Wells, R.K., Menefee, A.H., Skemer, P., Ellis, B.R. and Giammar, D.E. (2017) CO2 Mineral Trapping in Fractured Basalt. International Journal of Greenhouse Gas Control, 66, 204-217.
https://doi.org/10.1016/j.ijggc.2017.10.003
[22]  Dessert, C., Dupré, B., Gaillardet, J., François, L.M. and Allègre, C.J. (2003) Basalt Weathering Laws and the Impact of Basalt Weathering on the Global Carbon Cycle. Chemical Geology, 202, 257-273.
https://doi.org/10.1016/j.chemgeo.2002.10.001
[23]  Oelkers, E.H., Gislason, S.R. and Matter, J. (2008) Mineral Carbonation of CO2. Elements, 4, 333-337.
https://doi.org/10.2113/gselements.4.5.333
[24]  Mcgrail, B., Ho, A., Reidel, S. and Schaef, H. (2003) Use and Features of Basalt Formations for Geologic Sequestration. In: Gale, J. and Kaya, Y., Eds., Greenhouse Gas Control Technologies—6th International Conference, Elsevier, 1637-1640.
https://doi.org/10.1016/b978-008044276-1/50264-6
[25]  Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, E.L. and Sharp, D.H. (1995) Carbon Dioxide Disposal in Carbonate Minerals. Energy, 20, 1153-1170.
https://doi.org/10.1016/0360-5442(95)00071-n
[26]  Gunter, W.D., Perkins, E.H. and McCann, T.J. (1993) Aquifer Disposal of CO2-Rich Gases: Reaction Design for Added Capacity. Energy Conversion and Management, 34, 941-948.
https://doi.org/10.1016/0196-8904(93)90040-h
[27]  Kheshgi, H., de Coninck, H. and Kessels, J. (2012) Carbon Dioxide Capture and Storage: Seven Years after the IPCC Special Report. Mitigation and Adaptation Strategies for Global Change, 17, 563-567.
https://doi.org/10.1007/s11027-012-9391-5
[28]  Clark, D.E., Gunnarsson, I., Aradóttir, E.S., Þ. Arnarson, M., Þorgeirsson, Þ.A., Sigurðardóttir, S.S., et al. (2018) The Chemistry and Potential Reactivity of the CO2-H2S Charged Injected Waters at the Basaltic CarbFix2 Site, Iceland. Energy Procedia, 146, 121-128.
https://doi.org/10.1016/j.egypro.2018.07.016
[29]  Gislason, S.R. and Oelkers, E.H. (2014) Carbon Storage in Basalt. Science, 344, 373-374.
https://doi.org/10.1126/science.1250828
[30]  Raza, A., Rezaee, R., Gholami, R., Bing, C.H., Nagarajan, R. and Hamid, M.A. (2016) A Screening Criterion for Selection of Suitable CO2 Storage Sites. Journal of Natural Gas Science and Engineering, 28, 317-327.
https://doi.org/10.1016/j.jngse.2015.11.053
[31]  Wigand, M., Carey, J.W., Schütt, H., Spangenberg, E. and Erzinger, J. (2008) Geochemical Effects of CO2 Sequestration in Sandstones under Simulated in Situ Conditions of Deep Saline Aquifers. Applied Geochemistry, 23, 2735-2745.
https://doi.org/10.1016/j.apgeochem.2008.06.006
[32]  Kelemen, P., Benson, S.M., Pilorgé, H., Psarras, P. and Wilcox, J. (2019) An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 1, Article 9.
https://doi.org/10.3389/fclim.2019.00009
[33]  Yadav, S. and Mehra, A. (2021) A Review on Ex Situ Mineral Carbonation. Environmental Science and Pollution Research, 28, 12202-12231.
https://doi.org/10.1007/s11356-020-12049-4
[34]  Metz, B., Davidson, O., Coninck, H.D., et al. (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Intergovernmental Panel on Climate Change (IPCC).
[35]  Gislason, S.R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir, H., et al. (2010) Mineral Sequestration of Carbon Dioxide in Basalt: A Pre-Injection Overview of the CarbFix Project. International Journal of Greenhouse Gas Control, 4, 537-545.
https://doi.org/10.1016/j.ijggc.2009.11.013
[36]  Gislason, S.R. and Oelkers, E.H. (2014) Carbon Storage in Basalt. Science, 344, 373-374.
https://doi.org/10.1126/science.1250828
[37]  Kelektsoglou, K. (2018) Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece. Sustainability, 10, Article 4400.
https://doi.org/10.3390/su10124400
[38]  Ge, J., Zhang, X., Othman, F., Wang, Y., Roshan, H. and Le-Hussain, F. (2020) Effect of Fines Migration and Mineral Reactions on CO2-Water Drainage Relative Permeability. International Journal of Greenhouse Gas Control, 103, Article 103184.
https://doi.org/10.1016/j.ijggc.2020.103184
[39]  Raza, A., Glatz, G., Gholami, R., Mahmoud, M. and Alafnan, S. (2022) Carbon Mineralization and Geological Storage of CO2 in Basalt: Mechanisms and Technical Challenges. Earth-Science Reviews, 229, Article 104036.
https://doi.org/10.1016/j.earscirev.2022.104036
[40]  李晓媛, 常春, 于青春. CO2矿化封存条件下玄武岩溶解反应速率模型[J]. 现代地质, 2013, 27(6): 1477-1483.
[41]  McGrail, B.P., Schaef, H.T., Spane, F.A., Cliff, J.B., Qafoku, O., Horner, J.A. et al. (2016) Field Validation of Supercritical CO2 Reactivity with Basalts. Environmental Science & Technology Letters, 4, 6-10.
https://doi.org/10.1021/acs.estlett.6b00387
[42]  Oelkers, E.H. and Cole, D.R. (2008) Carbon Dioxide Sequestration a Solution to a Global Problem. Elements, 4, 305-310.
https://doi.org/10.2113/gselements.4.5.305
[43]  吾尔娜, 吴昌志, 季峻峰, 等. 松辽盆地徐家围子断陷玄武岩气藏储层的CO2封存潜力研究[J]. 高校地质学报, 2012, 18(2): 239-247.
[44]  Gunnarsson, I., Aradóttir, E.S., Oelkers, E.H., Clark, D.E., Arnarson, M.Þ., Sigfússon, B., et al. (2018) The Rapid and Cost-Effective Capture and Subsurface Mineral Storage of Carbon and Sulfur at the CarbFix2 Site. International Journal of Greenhouse Gas Control, 79, 117-126.
https://doi.org/10.1016/j.ijggc.2018.08.014
[45]  Wolff-Boenisch, D., Wenau, S., Gislason, S.R. and Oelkers, E.H. (2011) Dissolution of Basalts and Peridotite in Seawater, in the Presence of Ligands, and CO2: Implications for Mineral Sequestration of Carbon Dioxide. Geochimica et Cosmochimica Acta, 75, 5510-5525.
https://doi.org/10.1016/j.gca.2011.07.004
[46]  Snæbjörnsdóttir, S.Ó., Wiese, F., Fridriksson, T., Ármansson, H., Einarsson, G.M. and Gislason, S.R. (2014) CO2 Storage Potential of Basaltic Rocks in Iceland and the Oceanic Ridges. Energy Procedia, 63, 4585-4600.
https://doi.org/10.1016/j.egypro.2014.11.491
[47]  Energy Futures Initiative (EFI) (2020) Rock Solid: Harnessing Mineralization for Large-Scale Carbon Management. Energy Futures Initiative (USA), 1-47.
[48]  Rubin, E.S., Davison, J.E. and Herzog, H.J. (2015) The Cost of CO2 Capture and Storage. International Journal of Greenhouse Gas Control, 40, 378-400.
https://doi.org/10.1016/j.ijggc.2015.05.018

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133