|
克罗恩病发病机制的研究进展:遗传、环境与免疫因素
|
Abstract:
克罗恩病(Crohn’s Disease, CD)是一种慢性复发性肠道炎症性疾病,其发病机制复杂,涉及遗传、环境和免疫等多个因素的相互作用。近年来,随着基因组学、表观遗传学、蛋白组学和代谢组学等组学技术的发展,CD发病机制的研究取得了显著进展。全基因组关联研究(GWAS)发现了多个与CD相关的易感基因,如NOD2和IL23R等,这些基因参与免疫反应、肠道屏障功能及微生物组调节等多个生物学过程。此外,环境因素如饮食习惯、吸烟和生活方式等也在CD的发生和发展中起着关键作用。免疫系统的异常反应,包括免疫细胞功能紊乱、炎症介质释放失控以及自身免疫机制的参与,是CD发病的核心环节。文章就克罗恩病发病机制的研究现状做出系统性概述。
Crohn’s Disease (CD) is a chronic relapsing intestinal inflammatory disease with a complex pathogenesis involving the interaction of multiple factors such as genetics, environment, and immunity. In recent years, with the development of omics technologies such as genomics, epigenetics, proteomics, and metabolomics, significant progress has been made in the research on the pathogenesis of CD. Genome-wide association studies (GWAS) have identified multiple susceptibility genes associated with CD, such as NOD2 and IL23R. These genes are involved in multiple biological processes, including immune response, intestinal barrier function, and microbiome regulation. In addition, environmental factors such as diet, smoking, and lifestyle also play a crucial role in the occurrence and development of CD. The abnormal response of the immune system, including dysfunction of immune cells, uncontrolled release of inflammatory mediators, and the involvement of auto-immune mechanisms, is the core link in the pathogenesis of CD. This article provides a systematic overview of the current research status of the pathogenesis of Crohn’s disease.
[1] | Dolinger, M., Torres, J. and Vermeire, S. (2024) Crohn’s Disease. The Lancet, 403, 1177-1191. https://doi.org/10.1016/s0140-6736(23)02586-2 |
[2] | Roda, G., Chien Ng, S., Kotze, P.G., Argollo, M., Panaccione, R., Spinelli, A., et al. (2020) Crohn’s Disease. Nature Reviews Disease Primers, 6, Article No. 22. https://doi.org/10.1038/s41572-020-0156-2 |
[3] | Zhao, M. and Burisch, J. (2019) Impact of Genes and the Environment on the Pathogenesis and Disease Course of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 64, 1759-1769. https://doi.org/10.1007/s10620-019-05648-w |
[4] | Mirkov, M.U., Verstockt, B. and Cleynen, I. (2017) Genetics of Inflammatory Bowel Disease: Beyond NOD2. The Lancet Gastroenterology & Hepatology, 2, 224-234. https://doi.org/10.1016/s2468-1253(16)30111-x |
[5] | Albenberg, L. (2023) The Role of Diet in Pediatric Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 52, 565-577. https://doi.org/10.1016/j.gtc.2023.05.011 |
[6] | Elford, A.T., Ardalan, Z., Simkin, P. and Christensen, B. (2024) Comprehensive Review and Update of Stricturing Crohn’s Disease. Indian Journal of Gastroenterology, 43, 64-77. https://doi.org/10.1007/s12664-023-01508-8 |
[7] | Hornschuh, M., Wirthgen, E., Wolfien, M., Singh, K.P., Wolkenhauer, O. and Däbritz, J. (2021) The Role of Epigenetic Modifications for the Pathogenesis of Crohn’s Disease. Clinical Epigenetics, 13, Article No. 108. https://doi.org/10.1186/s13148-021-01089-3 |
[8] | Hugot, J., Chamaillard, M., Zouali, H., Lesage, S., Cézard, J., Belaiche, J., et al. (2001) Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn’s Disease. Nature, 411, 599-603. https://doi.org/10.1038/35079107 |
[9] | Duerr, R.H., Taylor, K.D., Brant, S.R., Rioux, J.D., Silverberg, M.S., Daly, M.J., et al. (2006) A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science, 314, 1461-1463. https://doi.org/10.1126/science.1135245 |
[10] | Vuyyuru, S.K., Shackelton, L.M., Hanzel, J., Ma, C., Jairath, V. and Feagan, B.G. (2023) Targeting IL-23 for IBD: Rationale and Progress to Date. Drugs, 83, 873-891. https://doi.org/10.1007/s40265-023-01882-9 |
[11] | Takač, B. (2020) Interactions among Interleukin-6, C-Reactive Protein and Interleukin-6 (-174) G/C Polymorphism in the Pathogenesis of Crohn’s Disease and Ulcerative Colitis. Acta Clinica Croatica, 59, 67-80. https://doi.org/10.20471/acc.2020.59.01.09 |
[12] | Strober, W. and Watanabe, T. (2011) NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn’s Disease. Mucosal Immunology, 4, 484-495. https://doi.org/10.1038/mi.2011.29 |
[13] | Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., et al. (2006) A Genome-Wide Association Scan of Nonsynonymous SNPs Identifies a Susceptibility Variant for Crohn Disease in Atg16l1. Nature Genetics, 39, 207-211. https://doi.org/10.1038/ng1954 |
[14] | Parkes, M., Barrett, J.C., Prescott, N.J., Tremelling, M., Anderson, C.A., Fisher, S.A., et al. (2007) Sequence Variants in the Autophagy Gene IRGM and Multiple Other Replicating Loci Contribute to Crohn’s Disease Susceptibility. Nature Genetics, 39, 830-832. https://doi.org/10.1038/ng2061 |
[15] | Ferguson, L.R., Huebner, C., Petermann, I., Gearry, R.B., Barclay, M.L., Demmers, P., et al. (2008) Single Nucleotide Polymorphism in the Tumor Necrosis Factor-α Gene Affects Inflammatory Bowel Diseases Risk. World Journal of Gastroenterology, 14, 4652-4661. https://doi.org/10.3748/wjg.14.4652 |
[16] | Glocker, E., Kotlarz, D., Boztug, K., Gertz, E.M., Schäffer, A.A., Noyan, F., et al. (2009) Inflammatory Bowel Disease and Mutations Affecting the Interleukin-10 Receptor. New England Journal of Medicine, 361, 2033-2045. https://doi.org/10.1056/nejmoa0907206 |
[17] | Chu, H., Khosravi, A., Kusumawardhani, I.P., Kwon, A.H.K., Vasconcelos, A.C., Cunha, L.D., et al. (2016) Gene-Microbiota Interactions Contribute to the Pathogenesis of Inflammatory Bowel Disease. Science, 352, 1116-1120. https://doi.org/10.1126/science.aad9948 |
[18] | Halme, L. (2006) Family and Twin Studies in Inflammatory Bowel Disease. World Journal of Gastroenterology, 12, 3668-3672. https://doi.org/10.3748/wjg.v12.i23.3668 |
[19] | Spehlmann, M.E., Begun, A.Z., Burghardt, J., Lepage, P., Raedler, A. and Schreiber, S. (2008) Epidemiology of Inflammatory Bowel Disease in a German Twin Cohort: Results of a Nationwide Study. Inflammatory Bowel Diseases, 14, 968-976. https://doi.org/10.1002/ibd.20380 |
[20] | Loddo, I. and Romano, C. (2015) Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis. Frontiers in Immunology, 6, Article 551. https://doi.org/10.3389/fimmu.2015.00551 |
[21] | Ventham, N.T., Kennedy, N.A., Nimmo, E.R. and Satsangi, J. (2013) Beyond Gene Discovery in Inflammatory Bowel Disease: The Emerging Role of Epigenetics. Gastroenterology, 145, 293-308. https://doi.org/10.1053/j.gastro.2013.05.050 |
[22] | Hou, J.K., Abraham, B. and El-Serag, H. (2011) Dietary Intake and Risk of Developing Inflammatory Bowel Disease: A Systematic Review of the Literature. American Journal of Gastroenterology, 106, 563-573. https://doi.org/10.1038/ajg.2011.44 |
[23] | Kostic, A.D., Xavier, R.J. and Gevers, D. (2014) The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology, 146, 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009 |
[24] | Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., et al. (2016) A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell, 167, 1339-1353.e21. https://doi.org/10.1016/j.cell.2016.10.043 |
[25] | Jantchou, P., Morois, S., Clavel-Chapelon, F., Boutron-Ruault, M. and Carbonnel, F. (2010) Animal Protein Intake and Risk of Inflammatory Bowel Disease: The E3N Prospective Study. American Journal of Gastroenterology, 105, 2195-2201. https://doi.org/10.1038/ajg.2010.192 |
[26] | Qin, X. (2012) Etiology of Inflammatory Bowel Disease: A Unified Hypothesis. World Journal of Gastroenterology, 18, 1708-1722. https://doi.org/10.3748/wjg.v18.i15.1708 |
[27] | Levine, A., Wine, E., Assa, A., Sigall Boneh, R., Shaoul, R., Kori, M., et al. (2019) Crohn’s Disease Exclusion Diet Plus Partial Enteral Nutrition Induces Sustained Remission in a Randomized Controlled Trial. Gastroenterology, 157, 440-450.e8. https://doi.org/10.1053/j.gastro.2019.04.021 |
[28] | Xu, D., Peng, Z., Li, Y., Hou, Q., Peng, Y. and Liu, X. (2023) Progress and Clinical Applications of Crohn’s Disease Exclusion Diet in Crohn’s Disease. Gut and Liver, 18, 404-413. https://doi.org/10.5009/gnl230093 |
[29] | Pedersen, K.M., Çolak, Y., Vedel-Krogh, S., Kobylecki, C.J., Bojesen, S.E. and Nordestgaard, B.G. (2021) Risk of Ulcerative Colitis and Crohn’s Disease in Smokers Lacks Causal Evidence. European Journal of Epidemiology, 37, 735-745. https://doi.org/10.1007/s10654-021-00763-3 |
[30] | Mahid, S.S., Minor, K.S., Soto, R.E., Hornung, C.A. and Galandiuk, S. (2006) Smoking and Inflammatory Bowel Disease: A Meta-analysis. Mayo Clinic Proceedings, 81, 1462-1471. https://doi.org/10.4065/81.11.1462 |
[31] | Allais, L., Verschuere, S., Maes, T., De Smet, R., Devriese, S., Gonzales, G.B., et al. (2020) Translational Research into the Effects of Cigarette Smoke on Inflammatory Mediators and Epithelial TRPV1 in Crohn’s Disease. PLOS ONE, 15, e0236657. https://doi.org/10.1371/journal.pone.0236657 |
[32] | Berkowitz, L., Schultz, B.M., Salazar, G.A., Pardo-Roa, C., Sebastián, V.P., Álvarez-Lobos, M.M., et al. (2018) Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn’s Disease and Ulcerative Colitis. Frontiers in Immunology, 9, Article 74. https://doi.org/10.3389/fimmu.2018.00074 |
[33] | To, N., Gracie, D.J. and Ford, A.C. (2016) Systematic Review with Meta‐Analysis: The Adverse Effects of Tobacco Smoking on the Natural History of Crohn’s Disease. Alimentary Pharmacology & Therapeutics, 43, 549-561. https://doi.org/10.1111/apt.13511 |
[34] | Wang, X., Wu, J., Wang, Q., et al. (2016) Association between Physical Activity and Inflammatory Bowel Disease Risk: A Meta-Analysis. Digestive and Liver Disease, 48, 1425-1431. |
[35] | Rahmani, J., Kord‐Varkaneh, H., Hekmatdoost, A., Thompson, J., Clark, C., Salehisahlabadi, A., et al. (2019) Body Mass Index and Risk of Inflammatory Bowel Disease: A Systematic Review and Dose‐Response Meta‐Analysis of Cohort Studies of over a Million Participants. Obesity Reviews, 20, 1312-1320. https://doi.org/10.1111/obr.12875 |
[36] | Ananthakrishnan, A.N., Long, M.D., Martin, C.F., Sandler, R.S. and Kappelman, M.D. (2013) Sleep Disturbance and Risk of Active Disease in Patients with Crohn’s Disease and Ulcerative Colitis. Clinical Gastroenterology and Hepatology, 11, 965-971. https://doi.org/10.1016/j.cgh.2013.01.021 |
[37] | Shephard, R. (2016) The Case for Increased Physical Activity in Chronic Inflammatory Bowel Disease: A Brief Review. International Journal of Sports Medicine, 37, 505-515. https://doi.org/10.1055/s-0042-103157 |
[38] | Ananthakrishnan, A.N., McGinley, E.L., Binion, D.G. and Saeian, K. (2011) Ambient Air Pollution Correlates with Hospitalizations for Inflammatory Bowel Disease: An Ecologic Analysis. Inflammatory Bowel Diseases, 17, 1138-1145. https://doi.org/10.1002/ibd.21455 |
[39] | Ananthakrishnan, A.N. (2014) Environmental Risk Factors for Inflammatory Bowel Diseases: A Review. Digestive Diseases and Sciences, 60, 290-298. https://doi.org/10.1007/s10620-014-3350-9 |
[40] | Shaw, S.Y., Blanchard, J.F. and Bernstein, C.N. (2010) Association between the Use of Antibiotics in the First Year of Life and Pediatric Inflammatory Bowel Disease. American Journal of Gastroenterology, 105, 2687-2692. https://doi.org/10.1038/ajg.2010.398 |
[41] | Geremia, A., Biancheri, P., Allan, P., Corazza, G.R. and Di Sabatino, A. (2014) Innate and Adaptive Immunity in Inflammatory Bowel Disease. Autoimmunity Reviews, 13, 3-10. https://doi.org/10.1016/j.autrev.2013.06.004 |
[42] | Smith, A.M., Rahman, F.Z., Hayee, B., Graham, S.J., Marks, D.J.B., Sewell, G.W., et al. (2009) Disordered Macrophage Cytokine Secretion Underlies Impaired Acute Inflammation and Bacterial Clearance in Crohn’s Disease. Journal of Experimental Medicine, 206, 1883-1897. https://doi.org/10.1084/jem.20091233 |
[43] | Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., et al. (2015) Association Analyses Identify 38 Susceptibility Loci for Inflammatory Bowel Disease and Highlight Shared Genetic Risk across Populations. Nature Genetics, 47, 979-986. |
[44] | Sakuraba, A., Sato, T., Kamada, N., Kitazume, M., Sugita, A. and Hibi, T. (2009) Th1/Th17 Immune Response Is Induced by Mesenteric Lymph Node Dendritic Cells in Crohn’s Disease. Gastroenterology, 137, 1736-1745. https://doi.org/10.1053/j.gastro.2009.07.049 |
[45] | Maul, J., Loddenkemper, C., Mundt, P., Berg, E., Giese, T., Stallmach, A., et al. (2005) Peripheral and Intestinal Regulatory CD4+CD25high T Cells in Inflammatory Bowel Disease. Gastroenterology, 128, 1868-1878. https://doi.org/10.1053/j.gastro.2005.03.043 |
[46] | Strober, W. and Fuss, I.J. (2011) Proinflammatory Cytokines in the Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology, 140, 1756-1767.e1. https://doi.org/10.1053/j.gastro.2011.02.016 |
[47] | Hovhannisyan, Z., Treatman, J., Littman, D.R. and Mayer, L. (2011) Characterization of Interleukin-17-Producing Regulatory T Cells in Inflamed Intestinal Mucosa from Patients with Inflammatory Bowel Diseases. Gastroenterology, 140, 957-965. https://doi.org/10.1053/j.gastro.2010.12.002 |
[48] | Neurath, M.F. (2014) Cytokines in Inflammatory Bowel Disease. Nature Reviews Immunology, 14, 329-342. https://doi.org/10.1038/nri3661 |
[49] | Noti, M., Corazza, N., Mueller, C., Berger, B. and Brunner, T. (2010) TNF Suppresses Acute Intestinal Inflammation by Inducing Local Glucocorticoid Synthesis. Journal of Experimental Medicine, 207, 1057-1066. https://doi.org/10.1084/jem.20090849 |
[50] | Mitsuyama, K. (2016) Antibody Markers in the Diagnosis of Inflammatory Bowel Disease. World Journal of Gastroenterology, 22, 1304. https://doi.org/10.3748/wjg.v22.i3.1304 |
[51] | Brakenhoff, L.K.P.M., van der Heijde, D.M., Hommes, D.W., Huizinga, T.W.J. and Fidder, H.H. (2010) The Joint-Gut Axis in Inflammatory Bowel Diseases. Journal of Crohn’s and Colitis, 4, 257-268. https://doi.org/10.1016/j.crohns.2009.11.005 |
[52] | Rosenblum, M.D., Remedios, K.A. and Abbas, A.K. (2015) Mechanisms of Human Autoimmunity. Journal of Clinical Investigation, 125, 2228-2233. https://doi.org/10.1172/jci78088 |
[53] | Ni, J., Wu, G.D., Albenberg, L. and Tomov, V.T. (2017) Gut Microbiota and IBD: Causation or Correlation? Nature Reviews Gastroenterology & Hepatology, 14, 573-584. https://doi.org/10.1038/nrgastro.2017.88 |
[54] | Baumgart, D.C. and Carding, S.R. (2007) Inflammatory Bowel Disease: Cause and Immunobiology. The Lancet, 369, 1627-1640. https://doi.org/10.1016/s0140-6736(07)60750-8 |
[55] | Peck, B.C.E., Weiser, M., Lee, S.E., Gipson, G.R., Iyer, V.B., Sartor, R.B., et al. (2015) MicroRNAs Classify Different Disease Behavior Phenotypes of Crohnʼs Disease and May Have Prognostic Utility. Inflammatory Bowel Diseases, 21, 2178-2187. https://doi.org/10.1097/mib.0000000000000478 |
[56] | Polytarchou, C., Oikonomopoulos, A., Mahurkar, S., Touroutoglou, A., Koukos, G., Hommes, D.W., et al. (2015) Assessment of Circulating MicroRNAs for the Diagnosis and Disease Activity Evaluation in Patients with Ulcerative Colitis by Using the Nanostring Technology. Inflammatory Bowel Diseases, 21, 2533-2539. https://doi.org/10.1097/mib.0000000000000547 |
[57] | Sands, B.E. (2015) Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology, 149, 1275-1285.e2. https://doi.org/10.1053/j.gastro.2015.07.003 |
[58] | Gecse, K.B., Brandse, J.F., van Wilpe, S., Löwenberg, M., Ponsioen, C., van den Brink, G., et al. (2015) Impact of Disease Location on Fecal Calprotectin Levels in Crohn’s Disease. Scandinavian Journal of Gastroenterology, 50, 841-847. https://doi.org/10.3109/00365521.2015.1008035 |
[59] | Jameson, J.L. and Longo, D.L. (2015) Precision Medicine—Personalized, Problematic, and Promising. New England Journal of Medicine, 372, 2229-2234. https://doi.org/10.1056/nejmsb1503104 |
[60] | Weiser, M., Simon, J.M., Kochar, B., Tovar, A., Israel, J.W., Robinson, A., et al. (2016) Molecular Classification of Crohn’s Disease Reveals Two Clinically Relevant Subtypes. Gut, 67, 36-42. https://doi.org/10.1136/gutjnl-2016-312518 |
[61] | Marigorta, U.M., Denson, L.A., Hyams, J.S., Mondal, K., Prince, J., Walters, T.D., et al. (2017) Transcriptional Risk Scores Link GWAS to EQTLS and Predict Complications in Crohn’s Disease. Nature Genetics, 49, 1517-1521. https://doi.org/10.1038/ng.3936 |
[62] | Walker, G.J., Harrison, J.W., Heap, G.A., Voskuil, M.D., Andersen, V., Anderson, C.A., et al. (2019) Association of Genetic Variants in NUDT15 with Thiopurine-Induced Myelosuppression in Patients with Inflammatory Bowel Disease. JAMA, 321, 773-785. https://doi.org/10.1001/jama.2019.0709 |
[63] | Mignini, I., Maresca, R., Ainora, M.E., Larosa, L., Scaldaferri, F., Gasbarrini, A., et al. (2023) Predicting Treatment Response in Inflammatory Bowel Diseases: Cross-Sectional Imaging Markers. Journal of Clinical Medicine, 12, Article 5933. https://doi.org/10.3390/jcm12185933 |
[64] | Tamura, H. (2023) Iga Nephropathy Associated with Crohn’s Disease. World Journal of Methodology, 13, 67-78. https://doi.org/10.5662/wjm.v13.i3.67 |
[65] | Sokol, H., Landman, C., Seksik, P., Berard, L., Montil, M., Nion-Larmurier, I., et al. (2020) Fecal Microbiota Transplantation to Maintain Remission in Crohn’s Disease: A Pilot Randomized Controlled Study. Microbiome, 8, Article No. 12. https://doi.org/10.1186/s40168-020-0792-5 |