|
一种Eu-MOF作为传感Fe3+、丙酮和农药的多响应荧光探针
|
Abstract:
重金属离子、挥发性有机化合物(VOC)和农药是人们广泛关注的热点问题,它们对人类健康和生态环境造成了严重危害。准确有效地检测这些物质在许多领域都具有重要意义。通过溶剂热法方法合成的三维铕基金属有机框架[Eu(BDC)(NO3)(DMF)2]n (1,BDC = 1,4-苯二甲酸),其具有良好的水稳定性和优异的光致发光性能。荧光研究结果表明:Eu?MOF在含有Fe3+离子、丙酮或NIT的溶液中均表现出荧光猝灭现象,具有很好的选择性,其检测限(体积分数和浓度)分别为1.98 μmol·L?1、1.09%、2.47 μmol·L?1。最后通过实验和模拟相结合的方法,揭示了其荧光淬灭的机理。
As hot issues of frequent concern, heavy metal ions, volatile organic compounds (VOCs) and pesticides pose serious hazards to human health and the ecological environment. Accurate and effective detection of these substances is of great importance in many fields. A three-dimensional (3D) europium-based metal-organic framework [Eu(BDC)(NO3)(DMF)2]n (1, BDC = 1,4-benzenedicarboxylic acid) has been constructed by solvothermal method, which demonstrates good water stability and excellent photoluminescence properties. The fluorescence study results indicate that it could selectively detect Fe3+ ions, acetone and NIT by fluorescence quenching with the detection limits (volume fraction and concentration) of 1.98 μmol·L?1, 1.09% and 2.47 μmol·L?1, respectively. Finally, the mechanism of its fluorescence quenching was elucidated by a combination of experiments and simulations.
[1] | Li, Y., Chai, B., Xu, H., Zheng, T., Chen, J., Liu, S., et al. (2022) Temperature-and Solvent-Induced Reversible Single-Crystal-to-Single-Crystal Transformations of TbIII-Based MOFs with Excellent Stabilities and Fluorescence Sensing Properties toward Drug Molecules. Inorganic Chemistry Frontiers, 9, 1504-1513. https://doi.org/10.1039/d2qi00023g |
[2] | Ye, F., Zhai, Y., Guo, K., Liu, Y., Li, N., Gao, S., et al. (2019) Safeners Improve Maize Tolerance under Herbicide Toxicity Stress by Increasing the Activity of Enzymes in vivo. Journal of Agricultural and Food Chemistry, 67, 11568-11576. https://doi.org/10.1021/acs.jafc.9b03587 |
[3] | Crépet, A., Luong, T.M., Baines, J., Boon, P.E., Ennis, J., Kennedy, M., et al. (2021) An International Probabilistic Risk Assessment of Acute Dietary Exposure to Pesticide Residues in Relation to Codex Maximum Residue Limits for Pesticides in Food. Food Control, 121, Article 107563. https://doi.org/10.1016/j.foodcont.2020.107563 |
[4] | Diana, M., Felipe-Sotelo, M. and Bond, T. (2019) Disinfection Byproducts Potentially Responsible for the Association between Chlorinated Drinking Water and Bladder Cancer: A Review. Water Research, 162, 492-504. https://doi.org/10.1016/j.watres.2019.07.014 |
[5] | Richardson, J.R., Fitsanakis, V., Westerink, R.H.S. and Kanthasamy, A.G. (2019) Neurotoxicity of Pesticides. Acta Neuropathologica, 138, 343-362. https://doi.org/10.1007/s00401-019-02033-9 |
[6] | Li, S., Wang, W., Zeng, X. and Ma, X. (2015) Electro-Catalytic Degradation Mechanism of Nitenpyram in Synthetic Wastewater Using Ti-Based SnO2-Sb with Rare Earth-Doped Anode. Desalination and Water Treatment, 54, 1925-1938. https://doi.org/10.1080/19443994.2014.899514 |
[7] | Todey, S.A., Fallon, A.M. and Arnold, W.A. (2018) Neonicotinoid Insecticide Hydrolysis and Photolysis: Rates and Residual Toxicity. Environmental Toxicology and Chemistry, 37, 2797-2809. https://doi.org/10.1002/etc.4256 |
[8] | Chandra, A., Bhuvanesh, E., Mandal, P. and Chattopadhyay, S. (2018) Surface Modification of Anion Exchange Membrane Using Layer-by-Layer Polyelectrolytes Deposition Facilitating Monovalent Organic Acid Transport. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 558, 579-590. https://doi.org/10.1016/j.colsurfa.2018.09.013 |
[9] | Zhang, Y., Liu, R., Lang, Q., Tan, M. and Zhang, Y. (2018) Composite Anion Exchange Membrane Made by Layer-by-Layer Method for Selective Ion Separation and Water Migration Control. Separation and Purification Technology, 192, 278-286. https://doi.org/10.1016/j.seppur.2017.10.022 |
[10] | Bricks, J.L., Kovalchuk, A., Trieflinger, C., Nofz, M., Büschel, M., Tolmachev, A.I., et al. (2005) On the Development of Sensor Molecules That Display FeIII-Amplified Fluorescence. Journal of the American Chemical Society, 127, 13522-13529. https://doi.org/10.1021/ja050652t |
[11] | Xu, X. and Yan, B. (2014) Eu(III)-Functionalized MIL-124 as Fluorescent Probe for Highly Selectively Sensing Ions and Organic Small Molecules Especially for Fe(III) and Fe(II). ACS Applied Materials & Interfaces, 7, 721-729. https://doi.org/10.1021/am5070409 |
[12] | Shen, Y., Tissot, A. and Serre, C. (2022) Recent Progress on MOF-Based Optical Sensors for VOC Sensing. Chemical Science, 13, 13978-14007. https://doi.org/10.1039/d2sc04314a |
[13] | Kumar, P., Kim, K. and Deep, A. (2015) Recent Advancements in Sensing Techniques Based on Functional Materials for Organophosphate Pesticides. Biosensors and Bioelectronics, 70, 469-481. https://doi.org/10.1016/j.bios.2015.03.066 |
[14] | Mol, H.G.J., van Dam, R.C.J. and Steijger, O.M. (2003) Determination of Polar Organophosphorus Pesticides in Vegetables and Fruits Using Liquid Chromatography with Tandem Mass Spectrometry: Selection of Extraction Solvent. Journal of Chromatography A, 1015, 119-127. https://doi.org/10.1016/s0021-9673(03)01209-3 |
[15] | Gui, W., Liu, Y., Wang, C., Liang, X. and Zhu, G. (2009) Development of a Direct Competitive Enzyme-Linked Immunosorbent Assay for Parathion Residue in Food Samples. Analytical Biochemistry, 393, 88-94. https://doi.org/10.1016/j.ab.2009.06.014 |
[16] | Creedon, N., Lovera, P., Moreno, J.G., Nolan, M. and O’Riordan, A. (2020) Highly Sensitive SERS Detection of Neonicotinoid Pesticides. Complete Raman Spectral Assignment of Clothianidin and Imidacloprid. The Journal of Physical Chemistry A, 124, 7238-7247. https://doi.org/10.1021/acs.jpca.0c02832 |
[17] | Zhang, M., Chen, H., Zhu, L., Wang, C., Ma, G. and Liu, X. (2016) Solid‐Phase Purification and Extraction for the Determination of Trace Neonicotinoid Pesticides in Tea Infusion. Journal of Separation Science, 39, 910-917. https://doi.org/10.1002/jssc.201501129 |
[18] | Vikrant, K., Tsang, D.C.W., Raza, N., Giri, B.S., Kukkar, D. and Kim, K. (2018) Potential Utility of Metal-Organic Framework-Based Platform for Sensing Pesticides. ACS Applied Materials & Interfaces, 10, 8797-8817. https://doi.org/10.1021/acsami.8b00664 |
[19] | Liu, Z., Zhao, Y., Deng, Y., Zhang, X., Kang, Y., Lu, Q., et al. (2017) Selectively Sensing and Adsorption Properties of Nickel(II) and Cadmium(II) Architectures with Rigid 1H-Imidazol-4-Yl Containing Ligands and 1,3,5-Tri(4-Carboxyphenyl)Benzene. Sensors and Actuators B: Chemical, 250, 179-188. https://doi.org/10.1016/j.snb.2017.04.151 |
[20] | Furukawa, H., Cordova, K.E., O’Keeffe, M. and Yaghi, O.M. (2013) The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, Article 1230444. https://doi.org/10.1126/science.1230444 |
[21] | Hu, Z., Deibert, B.J. and Li, J. (2014) Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection. Chemical Society Reviews, 43, 5815-5840. https://doi.org/10.1039/c4cs00010b |
[22] | Zuo, C., Li, Z., Bai, N., Xie, F., Liu, Y., Zheng, L., et al. (2018) Two Novel Magnesium-Based Metal-Organic Frameworks: Structure Tuning from 2D to 3D by Introducing the Auxiliary Ligand of Acetate. Inorganica Chimica Acta, 477, 59-65. https://doi.org/10.1016/j.ica.2018.02.002 |
[23] | Zhang, Y., Yuan, S., Day, G., Wang, X., Yang, X. and Zhou, H. (2018) Luminescent Sensors Based on Metal-Organic Frameworks. Coordination Chemistry Reviews, 354, 28-45. https://doi.org/10.1016/j.ccr.2017.06.007 |
[24] | Jia, W., Fan, R., Zhang, J., Zhu, K., Gai, S., Nai, H., et al. (2022) Home-Made Multifunctional Auxiliary Device for In-Situ Imaging Detection and Removal of Quinclorac Residues through MOF Decorated Gel Refills. Chemical Engineering Journal, 450, Article 138303. https://doi.org/10.1016/j.cej.2022.138303 |
[25] | Li, A., Chu, Q., Zhou, H., Yang, Z., Liu, B. and Zhang, J. (2021) Effective Nitenpyram Detection in a Dual-Walled Nitrogen-Rich In(III)/Tb(III)-Organic Framework. Inorganic Chemistry Frontiers, 8, 2341-2348. https://doi.org/10.1039/d1qi00224d |
[26] | Dai, J., Zhao, Y., Hou, Y., Zhong, G., Gao, R., Wu, J., et al. (2021) Detection of Carboxylesterase 1 and Carbamates with a Novel Fluorescent Protein Chromophore Based Probe. Dyes and Pigments, 192, Article 109444. https://doi.org/10.1016/j.dyepig.2021.109444 |
[27] | Li, Z., Tan, B., Wu, Z. and Huang, X. (2023) A Robust Strontium Coordination Polymer with Selective and Sensitive Fluorescence Sensing Ability for Fe3+ Ions. Materials, 16, Article 577. https://doi.org/10.3390/ma16020577 |
[28] | Yanlian, L., Li, Z., Zexing, S., Chengzhi, L. and Rongmei, W. (2024) Synthesis and Fluorescence Property of a New Tb-Based Metal-Organic Framework. International Journal of Modern Physics B. https://doi.org/10.1142/s0217979225400405 |
[29] | Feyisa Bogale, R., Ye, J., Sun, Y., Sun, T., Zhang, S., Rauf, A., et al. (2016) Highly Selective and Sensitive Detection of Metal Ions and Nitroaromatic Compounds by an Anionic Europium(III) Coordination Polymer. Dalton Transactions, 45, 11137-11144. https://doi.org/10.1039/c6dt01636g |
[30] | Wang, G., Li, Y., Shi, W., Zhang, B., Hou, L. and Wang, Y. (2021) A Robust Cluster-Based Eu-MOF as Multi-Functional Fluorescence Sensor for Detection of Antibiotics and Pesticides in Water. Sensors and Actuators B: Chemical, 331, Article 129377. https://doi.org/10.1016/j.snb.2020.129377 |
[31] | Garg, A., Almáši, M., Rattan Paul, D., Poonia, E., Luthra, J.R. and Sharma, A. (2021) Metal-Organic Framework MOF-76(Nd): Synthesis, Characterization, and Study of Hydrogen Storage and Humidity Sensing. Frontiers in Energy Research, 8, Article 604735. https://doi.org/10.3389/fenrg.2020.604735 |
[32] | Aulakh, D., Varghese, J.R. and Wriedt, M. (2015) The Importance of Polymorphism in Metal-Organic Framework Studies. Inorganic Chemistry, 54, 8679-8684. https://doi.org/10.1021/acs.inorgchem.5b01311 |
[33] | He, Y., Chen, D., Xu, H. and Cheng, P. (2015) Structural Diversity of Luminescent Lanthanide Metal-Organic Frameworks Based on a V-Shaped Ligand. CrystEngComm, 17, 2471-2478. https://doi.org/10.1039/c4ce02380c |
[34] | Zheng, M., Xie, Z., Qu, D., Li, D., Du, P., Jing, X., et al. (2013) On-off-on Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Applied Materials & Interfaces, 5, 13242-13247. https://doi.org/10.1021/am4042355 |
[35] | Zuo, C.Y., Li, Q.Q., Dai, M.Z., et al. (2023) A Cadmium-Based Metal. Organic Framework for Fluorescence Detection of Acetone and Fe3+. Chinese Journal of Inorganic Chemistry, 39, 2301-2310. |
[36] | Fan, L., Wang, F., Zhao, D., Sun, X., Chen, H., Wang, H., et al. (2020) Two Cadmium(II) Coordination Polymers as Multi-Functional Luminescent Sensors for the Detection of Cr(VI) Anions, Dichloronitroaniline Pesticide, and Nitrofuran Antibiotic in Aqueous Media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239, Article 118467. https://doi.org/10.1016/j.saa.2020.118467 |
[37] | Lerro, C.C., Beane Freeman, L.E., DellaValle, C.T., Kibriya, M.G., Aschebrook-Kilfoy, B., Jasmine, F., et al. (2017) Occupational Pesticide Exposure and Subclinical Hypothyroidism among Male Pesticide Applicators. Occupational and Environmental Medicine, 75, 79-89. https://doi.org/10.1136/oemed-2017-104431 |
[38] | GB 2763 (2021) National Food Safety Standard-Maximum Residue Limits for Pesticide in Food. |
[39] | Wu, H., Gao, L., Zhang, J., Zhai, L., Gao, T., Niu, X., et al. (2020) Syntheses, Characterization, and Slow Magnetic Relaxation or Luminescence Properties of Three New 2D Coordination Polymers. Journal of Molecular Structure, 1219, Article 128613. https://doi.org/10.1016/j.molstruc.2020.128613 |
[40] | Dong, M., Zhao, M., Ou, S., Zou, C. and Wu, C. (2014) A Luminescent Dye@MOF Platform: Emission Fingerprint Relationships of Volatile Organic Molecules. Angewandte Chemie International Edition, 53, 1575-1579. https://doi.org/10.1002/anie.201307331 |
[41] | Sun, Z., Li, H., Sun, G., Guo, J., Ma, Y. and Li, L. (2018) Design and Construction of Lanthanide Metal-Organic Frameworks through Mixed-Ligand Strategy: Sensing Property of Acetone and Cu2+. Inorganica Chimica Acta, 469, 51-56. https://doi.org/10.1016/j.ica.2017.08.053 |
[42] | Wang, X.Q., Ma, X.H., Feng, D.D., et al. (2022) Synthesis of a Water-Stable Zn(II)-Based Metal-Organic Framework for Lu-Minescence Detecting Fe3+ and 2,6-Dichloro-4-Nitroaniline. Chinese Journal of Inorganic Chemistry, 38, 137-144. |
[43] | Pramanik, S., Zheng, C., Zhang, X., Emge, T.J. and Li, J. (2011) New Microporous Metal-Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. Journal of the American Chemical Society, 133, 4153-4155. https://doi.org/10.1021/ja106851d |