全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微纳米颗粒物与污染物共迁移的研究进展
Research Progress on Co-Migration of Micro-Nano Particles and Pollutants

DOI: 10.12677/ms.2025.153042, PP. 370-379

Keywords: 微纳米颗粒,污染物,多孔介质,共迁移,关键因素
Micro-Nano Particles
, Pollutants, Porous Media, Co-Transport, Key Factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

人工微纳米颗粒带来巨大效益的背后存在着污染生态环境,甚至威胁人类健康的隐患。微纳米颗粒物与污染物间存在复杂的相互作用,因此两者在土壤环境中共存时,二者的迁移行为受到相互影响。探究微纳米颗粒物与污染物协同迁移的内在机制及作用模式,有助于评估其环境动态、预测地下水污染风险,为环境风险评估及污染控制措施提供坚实的理论基础。针对微纳米颗粒物与污染物共迁移行为的研究,系统性概括并分析关键影响因素包括溶液流速、多孔介质类型、离子强度、pH、有机物和生物膜对共迁移行为的影响,并详细阐述了微纳碳颗粒、微纳金属颗粒以及微纳塑料与污染物共迁移的研究现状。最后,基于现有研究成果,提出了未来值得进一步探索的研究方向。
Behind the huge benefits brought by artificial micro-nano particles, there are hidden dangers of polluting the ecological environment and even threatening human health. There is a complex interaction between micro and nano particles and pollutants, so when they coexist in the soil environment, their migration behavior is affected by each other. Exploring the internal mechanism and mode of synergistic migration of micro-nano particles and pollutants is helpful to assess their environmental dynamics, predict groundwater pollution risks, and provide a solid theoretical basis for environmental risk assessment and pollution control measures. In order to study the co-migration behavior of micro-nano particles and pollutants, the influences of key influencing factors including solution flow rate, type of porous media, ionic strength, pH, organic matter and biofilm on the co-migration behavior were systematically summarized and analyzed, and the research status of carbon nanoparticles, metal nanoparticles and micro-nano plastics and pollutants co-migration was elaborated. Finally, based on the existing research results, the future research direction worthy of further exploration is put forward.

References

[1]  Zhu, Y., Ma, L.Q., Gao, B., Bonzongo, J.C., Harris, W. and Gu, B. (2012) Transport and Interactions of Kaolinite and Mercury in Saturated Sand Media. Journal of Hazardous Materials, 213, 93-99.
https://doi.org/10.1016/j.jhazmat.2012.01.061

[2]  Chowdhury, I., Hong, Y., Honda, R.J. and Walker, S.L. (2011) Mechanisms of TiO2 Nanoparticle Transport in Porous Media: Role of Solution Chemistry, Nanoparticle Concentration, and Flowrate. Journal of Colloid and Interface Science, 360, 548-555.
https://doi.org/10.1016/j.jcis.2011.04.111

[3]  Prédélus, D., Lassabatere, L., Louis, C., Gehan, H., Brichart, T., Winiarski, T., et al. (2017) Nanoparticle Transport in Water-Unsaturated Porous Media: Effects of Solution Ionic Strength and Flow Rate. Journal of Nanoparticle Research, 19, Article No. 104.
https://doi.org/10.1007/s11051-017-3755-4

[4]  Ko, C. and Elimelech, M. (2000) The “Shadow Effect” in Colloid Transport and Deposition Dynamics in Granular Porous Media: Measurements and Mechanisms. Environmental Science & Technology, 34, 3681-3689.
https://doi.org/10.1021/es0009323

[5]  Qi, Z., Zhang, L., Wang, F., Hou, L. and Chen, W. (2014) Factors Controlling Transport of Graphene Oxide Nanoparticles in Saturated Sand Columns. Environmental Toxicology and Chemistry, 33, 998-1004.
https://doi.org/10.1002/etc.2525

[6]  Quevedo, I.R. and Tufenkji, N. (2012) Mobility of Functionalized Quantum Dots and a Model Polystyrene Nanoparticle in Saturated Quartz Sand and Loamy Sand. Environmental Science & Technology, 46, 4449-4457.
https://doi.org/10.1021/es2045458

[7]  Bradford, S.A. and Torkzaban, S. (2013) Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media. Langmuir, 29, 3668-3676.
https://doi.org/10.1021/la400229f

[8]  Bradford, S.A. and Torkzaban, S. (2015) Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media. Langmuir, 31, 12096-12105.
https://doi.org/10.1021/acs.langmuir.5b03080

[9]  Jin, C., Zhao, W., Normani, S.D., Zhao, P. and Emelko, M.B. (2017) Synergies of Media Surface Roughness and Ionic Strength on Particle Deposition during Filtration. Water Research, 114, 286-295.
https://doi.org/10.1016/j.watres.2017.02.010

[10]  He, L., Rong, H., Wu, D., Li, M., Wang, C. and Tong, M. (2020) Influence of Biofilm on the Transport and Deposition Behaviors of Nano-and Micro-Plastic Particles in Quartz Sand. Water Research, 178, Article ID: 115808.
https://doi.org/10.1016/j.watres.2020.115808

[11]  Verwey, E.J.W. (1947) Theory of the Stability of Lyophobic Colloids. The Journal of Physical and Colloid Chemistry, 51, 631-636.
https://doi.org/10.1021/j150453a001

[12]  Derjaguin, B. and Landau, L. (1993) Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Progress in Surface Science, 43, 30-59.
https://doi.org/10.1016/0079-6816(93)90013-l

[13]  Chen, M., Wang, D., Xu, X., Zhang, Y., Gui, X., Song, B., et al. (2022) Biochar Nanoparticles with Different Pyrolysis Temperatures Mediate Cadmium Transport in Water-Saturated Soils: Effects of Ionic Strength and Humic Acid. Science of the Total Environment, 806, Article ID: 150668.
https://doi.org/10.1016/j.scitotenv.2021.150668

[14]  Xu, T., Nan, F., Jiang, X., Tang, Y., Zeng, Y., Zhang, W., et al. (2020) Effect of Soil pH on the Transport, Fractionation, and Oxidation of Chromium (III). Ecotoxicology and Environmental Safety, 195, Article ID: 110459.
https://doi.org/10.1016/j.ecoenv.2020.110459

[15]  Duster, T.A. and Fein, J.B. (2014) Comparison of the Aggregation Behavior of TiO2 Nanoparticles Exposed to Fulvic Acid and Bacillus subtilis Exudates. Water, Air, & Soil Pollution, 225, Article No. 2189.
https://doi.org/10.1007/s11270-014-2189-1

[16]  Harvey, R.W., Metge, D.W., Mohanram, A., Gao, X. and Chorover, J. (2011) Differential Effects of Dissolved Organic Carbon upon Re-Entrainment and Surface Properties of Groundwater Bacteria and Bacteria-Sized Microspheres during Transport through a Contaminated, Sandy Aquifer. Environmental Science & Technology, 45, 3252-3259.
https://doi.org/10.1021/es102989x

[17]  Wang, D., Bradford, S.A., Harvey, R.W., Gao, B., Cang, L. and Zhou, D. (2012) Humic Acid Facilitates the Transport of Ars-Labeled Hydroxyapatite Nanoparticles in Iron Oxyhydroxide-Coated Sand. Environmental Science & Technology, 46, 2738-2745.
https://doi.org/10.1021/es203784u

[18]  Chen, M., Wang, D., Yang, F., Xu, X., Xu, N. and Cao, X. (2017) Transport and Retention of Biochar Nanoparticles in a Paddy Soil under Environmentally-Relevant Solution Chemistry Conditions. Environmental Pollution, 230, 540-549.
https://doi.org/10.1016/j.envpol.2017.06.101

[19]  Park, C.M., Han, J., Chu, K.H., Al-Hamadani, Y.A.J., Her, N., Heo, J., et al. (2017) Influence of Solution pH, Ionic Strength, and Humic Acid on Cadmium Adsorption onto Activated Biochar: Experiment and Modeling. Journal of Industrial and Engineering Chemistry, 48, 186-193.
https://doi.org/10.1016/j.jiec.2016.12.038

[20]  Zhang, C., Brown, P.J.B., Miles, R.J., White, T.A., Grant, D.G., Stalla, D., et al. (2019) Inhibition of Regrowth of Planktonic and Biofilm Bacteria after Peracetic Acid Disinfection. Water Research, 149, 640-649.
https://doi.org/10.1016/j.watres.2018.10.062

[21]  Mohammadi, M., Masoumipour, F., Hassanshahian, M. and Jafarinasab, T. (2019) Study the Antibacterial and Antibiofilm Activity of Carum copticum against Antibiotic-Resistant Bacteria in Planktonic and Biofilm Forms. Microbial Pathogenesis, 129, 99-105.
https://doi.org/10.1016/j.micpath.2019.02.002

[22]  Qi, Z., Hou, L., Zhu, D., Ji, R. and Chen, W. (2014) Enhanced Transport of Phenanthrene and 1-Naphthol by Colloidal Graphene Oxide Nanoparticles in Saturated Soil. Environmental Science & Technology, 48, 10136-10144.
https://doi.org/10.1021/es500833z

[23]  陈亚妮, 董姝楠, 孙媛媛, 等. 氧化石墨烯对铅在饱和多孔介质中运移的影响[J]. 农业环境科学学报, 2016, 35(7): 1392-1397.
[24]  Zhou, D.D., Jiang, X.H., Lu, Y., Fan, W., Huo, M.X. and Crittenden, J.C. (2016) Cotransport of Graphene Oxide and Cu(II) through Saturated Porous Media. Science of the Total Environment, 550, 717-726.
https://doi.org/10.1016/j.scitotenv.2016.01.141

[25]  Zhao, K., Chen, C., Cheng, T. and Shang, J. (2019) Graphene Oxide-Facilitated Uranium Transport and Release in Saturated Medium: Effect of Ionic Strength and Medium Structure. Environmental Pollution, 247, 668-677.
https://doi.org/10.1016/j.envpol.2019.01.037

[26]  Jiang, Y., Zhang, X., Yin, X., Sun, H. and Wang, N. (2018) Graphene Oxide-Facilitated Transport of Pb2+ and Cd2+ in Saturated Porous Media. Science of the Total Environment, 631, 369-376.
https://doi.org/10.1016/j.scitotenv.2018.03.036

[27]  王淑雅. 铁、锰离子与氧化石墨烯在多孔介质中的共迁移规律[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2019.
[28]  Peng, S., Wu, D., Ge, Z., Tong, M. and Kim, H. (2017) Influence of Graphene Oxide on the Transport and Deposition Behaviors of Colloids in Saturated Porous Media. Environmental Pollution, 225, 141-149.
https://doi.org/10.1016/j.envpol.2017.03.064

[29]  江佳玥. 氧化石墨烯对As(Ⅲ)、Fe在多孔介质中共迁移行为的影响[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2020.
[30]  Zhang, M., Bradford, S.A., Klumpp, E., Šimůnek, J., Wang, S., Wan, Q., et al. (2022) Significance of Non-DLVO Interactions on the Co-Transport of Functionalized Multiwalled Carbon Nanotubes and Soil Nanoparticles in Porous Media. Environmental Science & Technology, 56, 10668-10680.
https://doi.org/10.1021/acs.est.2c00681

[31]  Huang, B., Liu, Y., Li, B., Liu, S., Zeng, G., Zeng, Z., et al. (2017) Effect of Cu(II) Ions on the Enhancement of Tetracycline Adsorption by Fe3O4@SiO2-Chitosan/Graphene Oxide Nanocomposite. Carbohydrate Polymers, 157, 576-585.
https://doi.org/10.1016/j.carbpol.2016.10.025

[32]  Zhao, C., Pei, S., Ma, J., Song, Z., Xia, H., Song, X., et al. (2020) Influence of Graphene Oxide Nanosheets on the Cotransport of Cu-Tetracycline Multi-Pollutants in Saturated Porous Media. Environmental Science and Pollution Research, 27, 10846-10856.
https://doi.org/10.1007/s11356-020-07622-w

[33]  Cai, L., Tong, M., Ma, H. and Kim, H. (2013) Cotransport of Titanium Dioxide and Fullerene Nanoparticles in Saturated Porous Media. Environmental Science & Technology, 47, 5703-5710.
https://doi.org/10.1021/es400256d

[34]  Wang, X., Cai, L., Han, P., Lin, D., Kim, H. and Tong, M. (2014) Cotransport of Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanoparticles in Saturated Porous Media. Environmental Pollution, 195, 31-38.
https://doi.org/10.1016/j.envpol.2014.08.011

[35]  Cai, L., He, L., Peng, S., Li, M. and Tong, M. (2019) Influence of Titanium Dioxide Nanoparticles on the Transport and Deposition of Microplastics in Quartz Sand. Environmental Pollution, 253, 351-357.
https://doi.org/10.1016/j.envpol.2019.07.006

[36]  Dai, C., Shen, H., Duan, Y., You, X., Lai, X., Liu, S., et al. (2021) Transport of TiO2 and CeO2 Nanoparticles in Saturated Porous Media in the Presence of Surfactants with Environmentally Relevant Concentrations. Environmental Science and Pollution Research, 29, 9306-9317.
https://doi.org/10.1007/s11356-021-16266-3

[37]  Lu, Y., Xu, X., Yang, K. and Lin, D. (2013) The Effects of Surfactants and Solution Chemistry on the Transport of Multiwalled Carbon Nanotubes in Quartz Sand-Packed Columns. Environmental Pollution, 182, 269-277.
https://doi.org/10.1016/j.envpol.2013.07.034

[38]  Wang, M., Yu, C., Tang, D., Chen, J. and Gao, B. (2019) Effects of Surfactant and Electrolyte Concentrations, Cation Valence, and Temperature on Graphene Oxide Retention and Transport in Saturated Porous Media. Water, Air, & Soil Pollution, 230, Article No. 21.
https://doi.org/10.1007/s11270-018-4076-7

[39]  Engates, K.E. and Shipley, H.J. (2010) Adsorption of Pb, Cd, Cu, Zn, and Ni to Titanium Dioxide Nanoparticles: Effect of Particle Size, Solid Concentration, and Exhaustion. Environmental Science and Pollution Research, 18, 386-395.
https://doi.org/10.1007/s11356-010-0382-3

[40]  Fang, J., Zhang, K., Sun, P., Lin, D., Shen, B. and Luo, Y. (2016) Co-Transport of Pb2+ and TiO2 Nanoparticles in Repacked Homogeneous Soil Columns under Saturation Condition: Effect of Ionic Strength and Fulvic Acid. Science of the Total Environment, 571, 471-478.
https://doi.org/10.1016/j.scitotenv.2016.07.013

[41]  Hu, J. and Shipley, H.J. (2012) Evaluation of Desorption of Pb(II), Cu(II) and Zn(II) from Titanium Dioxide Nanoparticles. Science of the Total Environment, 431, 209-220.
https://doi.org/10.1016/j.scitotenv.2012.05.039

[42]  Fang, J., Shan, X., Wen, B., Lin, J., Owens, G. and Zhou, S. (2011) Transport of Copper as Affected by Titania Nanoparticles in Soil Columns. Environmental Pollution, 159, 1248-1256.
https://doi.org/10.1016/j.envpol.2011.01.039

[43]  Afzal, M.T.K., Firouzi, A.F. and Zahedkolaei, M.T. (2024) Enhanced Transport of Zerovalent Iron Nanoparticles and Nitrate Removal in Saturated Porous Media. Water, Air, & Soil Pollution, 235, Article No. 548.
https://doi.org/10.1007/s11270-024-07361-5

[44]  Abbasi, A., Qi, L. and Chen, G. (2024) Transport of Nanoscale Zero-Valent Iron in the Presence of Rhamnolipid. Science of the Total Environment, 927, Article ID: 172279.
https://doi.org/10.1016/j.scitotenv.2024.172279

[45]  Li, M., He, L., Zhang, M., Liu, X., Tong, M. and Kim, H. (2019) Cotransport and Deposition of Iron Oxides with Different-Sized Plastic Particles in Saturated Quartz Sand. Environmental Science & Technology, 53, 3547-3557.
https://doi.org/10.1021/acs.est.8b06904

[46]  Wang, D., Jin, Y. and Jaisi, D.P. (2015) Effect of Size-Selective Retention on the Cotransport of Hydroxyapatite and Goethite Nanoparticles in Saturated Porous Media. Environmental Science & Technology, 49, 8461-8470.
https://doi.org/10.1021/acs.est.5b01210

[47]  Wang, Z., Chen, M., Zhang, L., Wang, K., Yu, X., Zheng, Z., et al. (2018) Sorption Behaviors of Phenanthrene on the Microplastics Identified in a Mariculture Farm in Xiangshan Bay, Southeastern China. Science of the Total Environment, 628, 1617-1626.
https://doi.org/10.1016/j.scitotenv.2018.02.146

[48]  Liu, J., Ma, Y., Zhu, D., Xia, T., Qi, Y., Yao, Y., et al. (2018) Polystyrene Nanoplastics-Enhanced Contaminant Transport: Role of Irreversible Adsorption in Glassy Polymeric Domain. Environmental Science & Technology, 52, 2677-2685.
https://doi.org/10.1021/acs.est.7b05211

[49]  Xia, T., Lin, Y., Li, S., Yan, N., Xie, Y., He, M., et al. (2021) Co-Transport of Negatively Charged Nanoparticles in Saturated Porous Media: Impacts of Hydrophobicity and Surface O-Functional Groups. Journal of Hazardous Materials, 409, Article ID: 124477.
https://doi.org/10.1016/j.jhazmat.2020.124477

[50]  Dong, Z., Zhang, W., Qiu, Y., Yang, Z., Wang, J. and Zhang, Y. (2019) Cotransport of Nanoplastics (NPs) with Fullerene (C60) in Saturated Sand: Effect of NPs/C60 Ratio and Seawater Salinity. Water Research, 148, 469-478.
https://doi.org/10.1016/j.watres.2018.10.071

[51]  Yao, J., Wang, H., Ma, C., Cao, Y., Chen, W., Gu, L., et al. (2022) Cotransport of Thallium(I) with Polystyrene Plastic Particles in Water-Saturated Porous Media. Journal of Hazardous Materials, 422, Article ID: 126910.
https://doi.org/10.1016/j.jhazmat.2021.126910

[52]  Zhao, W., Zhao, Y., Geng, T., Tian, Y. and Zhao, P. (2023) Co-Transport Behavior and Trojan-Horse Effect of Colloidal Microplastics with Different Functional Groups and Heavy Metals in Porous Media. Journal of Hazardous Materials, 459, Article ID: 131892.
https://doi.org/10.1016/j.jhazmat.2023.131892

[53]  Hu, E., Shang, S., Fu, Z., Zhao, X., Nan, X., Du, Y., et al. (2020) Cotransport of Naphthalene with Polystyrene Nano-Plastics (PSNP) in Saturated Porous Media: Effects of PSNP/Naphthalene Ratio and Ionic Strength. Chemosphere, 245, Article ID: 125602.
https://doi.org/10.1016/j.chemosphere.2019.125602

[54]  Li, J., Zhang, K. and Zhang, H. (2018) Adsorption of Antibiotics on Microplastics. Environmental Pollution, 237, 460-467.
https://doi.org/10.1016/j.envpol.2018.02.050

[55]  Zhao, P., Cui, L., Zhao, W., Tian, Y., Li, M., Wang, Y., et al. (2021) Cotransport and Deposition of Colloidal Polystyrene Microplastic Particles and Tetracycline in Porous Media: The Impact of Ionic Strength and Cationic Types. Science of the Total Environment, 753, Article ID: 142064.
https://doi.org/10.1016/j.scitotenv.2020.142064

[56]  Zhou, D., Cai, Y., Yang, Z. and Wan, H. (2023) Interplay of Compound Pollutants with Microplastics Transported in Saturated Porous Media: Effect of Co-Existing Graphene Oxide and Tetracycline. Journal of Contaminant Hydrology, 259, Article ID: 104255.
https://doi.org/10.1016/j.jconhyd.2023.104255

[57]  Xu, L., Liang, Y., Liao, C., Xie, T., Zhang, H., Liu, X., et al. (2022) Cotransport of Micro-and Nano-Plastics with Chlortetracycline Hydrochloride in Saturated Porous Media: Effects of Physicochemical Heterogeneities and Ionic Strength. Water Research, 209, Article ID: 117886.
https://doi.org/10.1016/j.watres.2021.117886

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133