全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于铂修饰氧化铈/氧化锌纳米棒的柔性室温氢传感器
Flexible Hydrogen Sensor Based on Platinum Decorated CeO2/ZnO Nanorods Working at Room Temperature

DOI: 10.12677/ms.2025.153040, PP. 342-355

Keywords: 柔性衬底,氢气传感器,氧化锌,氧化铈,铂负载
Flexible Substrate
, Hydrogen Sensor, Zinc Oxide, Cerium Oxide, Platinum Loading

Full-Text   Cite this paper   Add to My Lib

Abstract:

柔性器件由于其重量轻、可弯曲、易于生产、成本低和运输方便等特点,在环境监测和可穿戴电子产品中表现出了巨大的潜力。金属氧化物半导体由于其易于集成、灵敏度高和使用寿命长等特点,在气体传感应用中引起了广泛关注。在这项研究中,我们成功地在柔性聚酰亚胺(PI)基板上制造了CeO?/Pt/ZnO纳米棒阵列,并采用了旋涂、水热合成、溅射和真空蒸发技术的组合,用于氢传感应用。优化后的样品CeO? (20 nm)/Pt (20 s)/ZnO在室温下对1200 ppm H?的响应率为58.7%,同时具有出色的循环稳定性和对氢气的高选择性。值得注意的是,该传感器在弯曲90度103次后仍保持良好的气敏性能。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和其他分析技术全面表征了样品的微观结构和化学价态。此外,还研究了影响传感性能的因素,并阐明了增强气敏响应的机制。
Flexible devices have demonstrated significant potential in environmental monitoring and wearable electronics due to their lightweight, bendability, ease of production, low cost, and convenient transportation. Metal oxide semiconductors have garnered considerable attention for gas sensing applications, thanks to their ease of integration, high sensitivity, and long service life. In this study, CeO?/Pt/ZnO nanorod arrays were successfully fabricated on a flexible polyimide (PI) substrate using a combination of spin coating, hydrothermal synthesis, sputtering, and vacuum evaporation techniques for hydrogen sensing applications. The optimized sample, CeO? (20 nm)/Pt (20 s)/ZnO, exhibited a response of 58.7% to 1200 ppm H2 at room temperature, along with excellent cyclic stability and high selectivity for hydrogen gas. Notably, the sensor maintained good gas-sensing performance even after being bent 90 degrees for 103 times. The microstructure and chemical valence states of the samples were comprehensively characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and other analytical techniques. Additionally, the factors influencing the sensing performance were investigated, and the mechanisms underlying the enhanced gas-sensing response were elucidated.

References

[1]  Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., et al. (2015) Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges. 2015 IEEE International Conference on Services Computing, New York, 27 June-2 July 2015, 285-292.
https://doi.org/10.1109/scc.2015.47
[2]  DeFranco, J.F. and Voas, J. (2024) Internet of Things-Flavored Chips. Computer, 57, 156-158.
https://doi.org/10.1109/mc.2024.3363259
[3]  Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B. and Habchi, R. (2018) A Review on Flexible Gas Sensors: From Materials to Devices. Sensors and Actuators A: Physical, 284, 209-231.
https://doi.org/10.1016/j.sna.2018.10.036
[4]  Ou, L., Liu, M., Zhu, L., Zhang, D.W. and Lu, H. (2022) Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Letters, 14, Article No. 206.
https://doi.org/10.1007/s40820-022-00956-9
[5]  Han, S., Peng, H., Sun, Q., Venkatesh, S., Chung, K., Lau, S.C., et al. (2017) An Overview of the Development of Flexible Sensors. Advanced Materials, 29, Article 1700375.
https://doi.org/10.1002/adma.201700375
[6]  Dudareva, N., Klempien, A., Muhlemann, J.K. and Kaplan, I. (2013) Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. New Phytologist, 198, 16-32.
https://doi.org/10.1111/nph.12145
[7]  Ehn, M., Thornton, J.A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., et al. (2014) A Large Source of Low-Volatility Secondary Organic Aerosol. Nature, 506, 476-479.
https://doi.org/10.1038/nature13032
[8]  Hu, Z. and Zhang, X. (2019) Study on Laminar Combustion Characteristic of Low Calorific Value Gas Blended with Hydrogen in a Constant Volume Combustion Bomb. International Journal of Hydrogen Energy, 44, 487-493.
https://doi.org/10.1016/j.ijhydene.2018.02.055
[9]  Wang, X., Li, B., Han, B., Jin, X., Zhang, D. and Bi, M. (2023) Explosion of High Pressure Hydrogen Tank in Fire: Mechanism, Criterion, and Consequence Assessment. Journal of Energy Storage, 72, Article 108455.
https://doi.org/10.1016/j.est.2023.108455
[10]  Cho, B., Yoon, J., Hahm, M.G., Kim, D., Kim, A.R., Kahng, Y.H., et al. (2014) Graphene-Based Gas Sensor: Metal Decoration Effect and Application to a Flexible Device. Journal of Materials Chemistry C, 2, 5280-5285.
https://doi.org/10.1039/c4tc00510d
[11]  Singh, E., Meyyappan, M. and Nalwa, H.S. (2017) Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Applied Materials & Interfaces, 9, 34544-34586.
https://doi.org/10.1021/acsami.7b07063
[12]  Chiou, J. and Wu, C. (2017) A Wearable and Wireless Gas-Sensing System Using Flexible Polymer/Multi-Walled Carbon Nanotube Composite Films. Polymers, 9, Article 457.
https://doi.org/10.3390/polym9090457
[13]  Yu, P., Wang, J., Du, H., Yao, P., Hao, Y. and Li, X. (2013) Y-Doped ZnO Nanorods by Hydrothermal Method and Their Acetone Gas Sensitivity. Journal of Nanomaterials, 2013, 1-6.
https://doi.org/10.1155/2013/751826
[14]  Hui, G., Zhu, M., Yang, X., Liu, J., Pan, G. and Wang, Z. (2020) Highly Sensitive Ethanol Gas Sensor Based on CeO2/ZnO Binary Heterojunction Composite. Materials Letters, 278, Article 128453.
https://doi.org/10.1016/j.matlet.2020.128453
[15]  Li, S., Zhang, Y., Han, L., Li, X. and Xu, Y. (2022) Highly Sensitive and Selective Triethylamine Gas Sensor Based on Hierarchical Radial CeO2/Zno N-N Heterojunction. Sensors and Actuators B: Chemical, 367, Article 132031.
https://doi.org/10.1016/j.snb.2022.132031
[16]  Li, X., Tan, T., Ji, W., Zhou, W., Bao, Y., Xia, X., et al. (2023) Remarkably Enhanced Methane Sensing Performance at Room Temperature via Constructing a Self-Assembled Mulberry-Like ZnO/SnO2 Hierarchical Structure. Energy & Environmental Materials, 7, e12624.
https://doi.org/10.1002/eem2.12624
[17]  Bian, H., Ma, S., Sun, A., Xu, X., Yang, G., Yan, S., et al. (2016) Improvement of Acetone Gas Sensing Performance of ZnO Nanoparticles. Journal of Alloys and Compounds, 658, 629-635.
https://doi.org/10.1016/j.jallcom.2015.09.217
[18]  Wang, S., Hu, H., Tan, T., Li, X., Zhou, W., Tian, Z., et al. (2025) Enhancing NO2 Sensing Performance through Interface Engineering in Cs2AgBiBr6/SnO2/ZnO-NrS Sensor. Sensors and Actuators B: Chemical, 422, Article 136654.
https://doi.org/10.1016/j.snb.2024.136654
[19]  Kumar, S., Lawaniya, S.D., Agarwal, S., Yu, Y., Nelamarri, S.R., Kumar, M., et al. (2023) Optimization of Pt Nanoparticles Loading in ZnO for Highly Selective and Stable Hydrogen Gas Sensor at Reduced Working Temperature. Sensors and Actuators B: Chemical, 375, Article 132943.
https://doi.org/10.1016/j.snb.2022.132943
[20]  Zhu, L. and Zeng, W. (2017) Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Actuators A: Physical, 267, 242-261.
https://doi.org/10.1016/j.sna.2017.10.021
[21]  Cheng, I., Lin, C. and Pan, F. (2021) Gas Sensing Behavior of ZnO toward H2 at Temperatures Below 300°C and Its Dependence on Humidity and Pt-decoration. Applied Surface Science, 541, Article 148551.
https://doi.org/10.1016/j.apsusc.2020.148551
[22]  Li, X., He, H., Tan, T., Zou, Z., Tian, Z., Zhou, W., et al. (2023) Annealing Effect on the Methane Sensing Performance of Pt-SnO2/ZnO Double Layer Sensor. Applied Surface Science, 640, Article 158428.
https://doi.org/10.1016/j.apsusc.2023.158428
[23]  Xie, S., Wang, Z., Cheng, F., Zhang, P., Mai, W. and Tong, Y. (2017) Ceria and Ceria-Based Nanostructured Materials for Photoenergy Applications. Nano Energy, 34, 313-337.
https://doi.org/10.1016/j.nanoen.2017.02.029
[24]  Huang, X., Zhang, K., Peng, B., Wang, G., Muhler, M. and Wang, F. (2021) Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 11, 9618-9678.
https://doi.org/10.1021/acscatal.1c02443
[25]  Sun, C., Li, H. and Chen, L. (2012) Nanostructured Ceria-Based Materials: Synthesis, Properties, and Applications. Energy & Environmental Science, 5, 8475-8505.
https://doi.org/10.1039/c2ee22310d
[26]  Mandić, V., Bafti, A., Pavić, L., Panžić, I., Kurajica, S., Pavelić, J., et al. (2022) Humidity Sensing Ceria Thin-Films. Nanomaterials, 12, Article 521.
https://doi.org/10.3390/nano12030521
[27]  Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H. (1995) Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 85, 247-255.
https://doi.org/10.1016/1010-6030(94)03906-b
[28]  Divya, T., Nikhila, M.P., Anju, M., Arsha Kusumam, T.V., Akhila, A.K., Ravikiran, Y.T., et al. (2017) Nanoceria Based Thin Films as Efficient Humidity Sensors. Sensors and Actuators A: Physical, 261, 85-93.
https://doi.org/10.1016/j.sna.2017.05.008
[29]  Wang, C., Yin, L., Zhang, L., Xiang, D. and Gao, R. (2010) Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 10, 2088-2106.
https://doi.org/10.3390/s100302088
[30]  Rashid, T., Phan, D. and Chung, G. (2013) A Flexible Hydrogen Sensor Based on Pd Nanoparticles Decorated ZnO Nanorods Grown on Polyimide Tape. Sensors and Actuators B: Chemical, 185, 777-784.
https://doi.org/10.1016/j.snb.2013.01.015
[31]  Wang, D., Yin, Y., Xu, P., Wang, F., Wang, P., Xu, J., et al. (2020) The Catalytic-Induced Sensing Effect of Triangular CeO2 Nanoflakes for Enhanced BTEX Vapor Detection with Conventional ZnO Gas Sensors. Journal of Materials Chemistry A, 8, 11188-11194.
https://doi.org/10.1039/d0ta01708f
[32]  Ong, W.L., Zhang, C. and Ho, G.W. (2011) Ammonia Plasma Modification Towards a Rapid and Low Temperature Approach for Tuning Electrical Conductivity of ZnO Nanowires on Flexible Substrates. Nanoscale, 3, 4206-4214.
https://doi.org/10.1039/c1nr10527b
[33]  Mohammad, S.M., Hassan, Z., Talib, R.A., Ahmed, N.M., Al-Azawi, M.A., Abd-Alghafour, N.M., et al. (2016) Fabrication of a Highly Flexible Low-Cost H2 Gas Sensor Using ZnO Nanorods Grown on an Ultra-Thin Nylon Substrate. Journal of Materials Science: Materials in Electronics, 27, 9461-9469.
https://doi.org/10.1007/s10854-016-4993-4
[34]  Chung, M.G., Kim, D., Seo, D.K., Kim, T., Im, H.U., Lee, H.M., et al. (2012) Flexible Hydrogen Sensors Using Graphene with Palladium Nanoparticle Decoration. Sensors and Actuators B: Chemical, 169, 387-392.
https://doi.org/10.1016/j.snb.2012.05.031
[35]  Punetha, D., Kar, M. and Pandey, S.K. (2020) A New Type Low-Cost, Flexible and Wearable Tertiary Nanocomposite Sensor for Room Temperature Hydrogen Gas Sensing. Scientific Reports, 10, Article No. 2151.
https://doi.org/10.1038/s41598-020-58965-w
[36]  Su, P. and Chuang, Y. (2010) Flexible H2 Sensors Fabricated by Layer-by-Layer Self-Assembly Thin Film of Multi-Walled Carbon Nanotubes and Modified in Situ with Pd Nanoparticles. Sensors and Actuators B: Chemical, 145, 521-526.
https://doi.org/10.1016/j.snb.2009.12.068
[37]  Vidiš, M., Shpetnyi, I.O., Roch, T., Satrapinskyy, L., Patrnčiak, M., Plecenik, A., et al. (2021) Flexible Hydrogen Gas Sensor Based on a Capacitor-Like Pt/TiO2/Pt Structure on Polyimide Foil. International Journal of Hydrogen Energy, 46, 19217-19228.
https://doi.org/10.1016/j.ijhydene.2021.03.052
[38]  Kumar, S., Lawaniya, S.D., Nelamarri, S.R., Kumar, M., Dwivedi, P.K., Mishra, Y.K., et al. (2023) ZnO Nanosheets Decorated with Ag-Pt Nanoparticles for Selective Detection of Ethanol. ACS Applied Nano Materials, 6, 15479-15489.
https://doi.org/10.1021/acsanm.3c02035
[39]  Kumar, S., Lawaniya, S.D., Nelamarri, S.R., Kumar, M., Dwivedi, P.K., Yu, Y., et al. (2023) Bimetallic Ag-Pd Nanoparticles Decorated ZnO Nanorods for Efficient Hydrogen Sensing. Sensors and Actuators B: Chemical, 394, Article 134394.
https://doi.org/10.1016/j.snb.2023.134394
[40]  Liu, X., Zhou, K., Wang, L., Wang, B. and Li, Y. (2009) Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. Journal of the American Chemical Society, 131, 3140-3141.
https://doi.org/10.1021/ja808433d

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133