全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有潜在平衡锚点指导的大规模多视图子空间聚类
Large-Scale Multi-View Subspace Clustering with Latent-Balance Anchors Guidance

DOI: 10.12677/pm.2025.153078, PP. 71-84

Keywords: 多视图子空间聚类,锚点选择,平衡结构,锚图
Multi-View Subspace Clustering
, Anchor Selecting, Balance Structure, Anchor Graph

Full-Text   Cite this paper   Add to My Lib

Abstract:

多视图子空间聚类(MVSC)是一种重要且广泛应用的技术,因为它能够有效地整合多视图信息并发现相关模式。然而,其高昂的计算成本限制了它在大规模数据集中的应用。为提高计算效率,基于锚点的MVSC方法应运而生,这些方法中选择锚点的策略包括直接对原始数据进行k-means聚类以获得锚点,或通过动态学习获得锚点。前者容易受到高维数据中的噪声和异常值的影响,从而导致聚类性能较差;后者主要依赖于正交性约束来提高锚点的多样性,但忽视了锚点的平衡结构和潜在语义关系,这可能削弱锚点的代表性和区分能力。为了解决这些问题,本文结合两种锚点选择策略的优点,提出了一种新的MVSC方法,称为带有潜在平衡锚点指导的大规模多视角子空间聚类。具体来说,本文将潜在完整空间学习、锚点搜索和锚点图构建整合到一个统一的框架中,实现相互加强和联合优化。与现有在原始空间中学习锚点和构建锚点图的方法不同,本文在潜在完整空间中进行锚点学习和图构建。此外,本文设计了一个新颖的正则化项,使锚点集向潜在质心对齐,从而在锚点学习过程中充分利用数据集的整体结构,使锚点集具有平衡结构并更具代表性。最后,在十个基准数据集上进行的大量实验证明了所提出的算法与现有最佳聚类方法相比所具有的有效性和优越性。
Multi-view subspace clustering (MVSC) is an important and widely used technique because it can effectively integrate multi-view information and discover relevant patterns. However, its high computational cost limits its application to large-scale datasets. To improve computational efficiency, anchor-based MVSC methods have been proposed. These methods involve strategies for selecting anchors, including directly performing k-means clustering on the original data to obtain anchors, or dynamically learning anchors. The former is susceptible to noise and outliers in high-dimensional data, leading to poor clustering performance, while the latter mainly relies on orthogonality constraints to improve the diversity of anchors but ignores the balance structure and underlying semantic relationships, which may undermine the representativeness and discriminative power of the anchors. To address these issues, we combine the advantages of both anchor selection strategies and propose a new MVSC method called Large-Scale Multi-View Subspace Clustering with Latent-Balance Anchor Guidance. Specifically, we integrate latent space learning, anchor search, and anchor graph construction into a unified framework for mutual reinforcement and joint optimization. Unlike existing methods that learn anchors and construct anchor graphs in the original space, we perform anchor learning and graph construction in the latent space. Additionally, we design a novel regularization term that aligns the anchor set with the latent centroids, thereby fully utilizing the overall structure of the dataset during the anchor learning process, which results in an anchor set with a balanced structure and improved representativeness. Finally, extensive experiments on ten benchmark datasets demonstrate the effectiveness and superiority of the proposed algorithm compared to existing state-of-the-art clustering methods.

References

[1]  Xu, C., Tao, D. and Xu, C. (2013) A Survey on Multi-View Learning. arXiv: 1304.5634.
https://doi.org/10.48550/arXiv.1304.5634
[2]  Bickel, S. and Scheffer, T. (2004) Multi-View Clustering. Fourth IEEE International Conference on Data Mining, Brighton, 1-4 November 2004, 19-26.
https://doi.org/10.1109/icdm.2004.10095
[3]  Chaudhuri, K., Kakade, S.M., Livescu, K. and Sridharan, K. (2009) Multi-View Clustering via Canonical Correlation Analysis. Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, 14-18 June 2009, 129-136.
https://doi.org/10.1145/1553374.1553391
[4]  Abhishek Kumar and Hal Daume. (2011) A Co-Training Approach for Multi-View Spectral Clustering. Proceedings of the 28th International Conference on International Conference on Machine Learning, Bellevue, 28 June-2 July 2011, 393-400.
[5]  Zhao, H., Ding, Z. and Fu, Y. (2017) Multi-View Clustering via Deep Matrix Factorization. Proceedings of the AAAI Conference on Artificial Intelligence, 31, 1921-1927.
https://doi.org/10.1609/aaai.v31i1.10867
[6]  Zhao, N. and Bu, J. (2022) Robust Multi-View Subspace Clustering Based on Consensus Representation and Orthogonal Diversity. Neural Networks, 150, 102-111.
https://doi.org/10.1016/j.neunet.2022.03.009
[7]  Zhang, Y., Yang, W., Liu, B., Ke, G., Pan, Y. and Yin, J. (2017) Multi-View Spectral Clustering via Tensor-SVD Decomposition. 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston, 6-8 November 2017, 493-497.
https://doi.org/10.1109/ictai.2017.00081
[8]  Wang, H., Yang, Y. and Liu, B. (2020) GMC: Graph-Based Multi-View Clustering. IEEE Transactions on Knowledge and Data Engineering, 32, 1116-1129.
https://doi.org/10.1109/tkde.2019.2903810
[9]  Lin, Z. and Kang, Z. (2021) Graph Filter-Based Multi-View Attributed Graph Clustering. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, 19-27 August 2021, 2723-2729.
https://doi.org/10.24963/ijcai.2021/375
[10]  Huang, S., Tsang, I.W., Xu, Z. and Lv, J. (2022) Measuring Diversity in Graph Learning: A Unified Framework for Structured Multi-View Clustering. IEEE Transactions on Knowledge and Data Engineering, 34, 5869-5883.
https://doi.org/10.1109/tkde.2021.3068461
[11]  Huang, S., Kang, Z. and Xu, Z. (2020) Auto-Weighted Multi-View Clustering via Deep Matrix Decomposition. Pattern Recognition, 97, Article 107015.
https://doi.org/10.1016/j.patcog.2019.107015
[12]  Liang, N., Yang, Z., Li, Z., Sun, W. and Xie, S. (2020) Multi-View Clustering by Non-Negative Matrix Factorization with Co-Orthogonal Constraints. Knowledge-Based Systems, 194, Article 105582.
https://doi.org/10.1016/j.knosys.2020.105582
[13]  Chen, M., Huang, L., Wang, C. and Huang, D. (2020) Multi-View Clustering in Latent Embedding Space. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 3513-3520.
https://doi.org/10.1609/aaai.v34i04.5756
[14]  Guo, J., Sun, Y., Gao, J., Hu, Y. and Yin, B. (2022) Rank Consistency Induced Multiview Subspace Clustering via Low-Rank Matrix Factorization. IEEE Transactions on Neural Networks and Learning Systems, 33, 3157-3170.
https://doi.org/10.1109/tnnls.2021.3071797
[15]  Zhao, J. and Lu, G. (2023) Clean Affinity Matrix Learning with Rank Equality Constraint for Multi-View Subspace Clustering. Pattern Recognition, 134, Article 109118.
https://doi.org/10.1016/j.patcog.2022.109118
[16]  Chen, H., Tai, X. and Wang, W. (2022) Multi-View Subspace Clustering with Inter-Cluster Consistency and Intra-Cluster Diversity among Views. Applied Intelligence, 52, 9239-9255.
https://doi.org/10.1007/s10489-021-02895-1
[17]  Bellman, R. (1954) Some Applications of the Theory of Dynamic Programming—A Review. Journal of the Operations Research Society of America, 2, 275-288.
https://doi.org/10.1287/opre.2.3.275
[18]  Lin, Z., Kang, Z., Zhang, L. and Tian, L. (2021) Multi-View Attributed Graph Clustering. IEEE Transactions on Knowledge and Data Engineering, 35, 1872-1880.
[19]  Liu, L., Chen, P., Luo, G., Kang, Z., Luo, Y. and Han, S. (2022) Scalable Multi-View Clustering with Graph Filtering. Neural Computing and Applications, 34, 16213-16221.
https://doi.org/10.1007/s00521-022-07326-x
[20]  Li, Y., Nie, F., Huang, H. and Huang, J. (2015) Large-Scale Multi-View Spectral Clustering via Bipartite Graph. Proceedings of the AAAI Conference on Artificial Intelligence, 29, 2750-2756.
https://doi.org/10.1609/aaai.v29i1.9598
[21]  Yu, X., Liu, H., Zhang, Y., Sun, S. and Zhang, C. (2023) Multi-View Clustering via Efficient Representation Learning with Anchors. Pattern Recognition, 144, Article 109860.
https://doi.org/10.1016/j.patcog.2023.109860
[22]  Ou, Q., Wang, S., Zhou, S., Li, M., Guo, X. and Zhu, E. (2020) Anchor-Based Multiview Subspace Clustering with Diversity Regularization. IEEE MultiMedia, 27, 91-101.
https://doi.org/10.1109/mmul.2020.3020169
[23]  Wang, S., Liu, X., Zhu, X., Zhang, P., Zhang, Y., Gao, F., et al. (2022) Fast Parameter-Free Multi-View Subspace Clustering with Consensus Anchor Guidance. IEEE Transactions on Image Processing, 31, 556-568.
https://doi.org/10.1109/tip.2021.3131941
[24]  Lin, Z., Liu, R. and Su, Z. (2011) Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation. Proceedings of the 25th International Conference on Neural Information Processing Systems, Granada, 12-15 December 2011, 612-620.
[25]  Wang, S., Liu, X., Zhu, E., Tang, C., Liu, J., Hu, J., et al. (2019) Multi-View Clustering via Late Fusion Alignment Maximization. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 10-16 August 2019, 3778-3784.
https://doi.org/10.24963/ijcai.2019/524
[26]  Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y. and Ma, Y. (2013) Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 171-184.
https://doi.org/10.1109/tpami.2012.88
[27]  Su, C., Yuan, H., Lai, L.L. and Yang, Q. (2023) Anchor-Based Multi-View Subspace Clustering with Graph Learning. Neurocomputing, 547, Article 126320.
https://doi.org/10.1016/j.neucom.2023.126320
[28]  Ou, Q., Wang, S., Zhang, P., Zhou, S. and Zhu, E. (2024) Anchor-Based Multi-View Subspace Clustering with Hierarchical Feature Descent. Information Fusion, 106, Article 102225.
https://doi.org/10.1016/j.inffus.2024.102225
[29]  Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M. and Xu, Z. (2020) Large-Scale Multi-View Subspace Clustering in Linear Time. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 4412-4419.
https://doi.org/10.1609/aaai.v34i04.5867
[30]  Kang, Z., Lin, Z., Zhu, X. and Xu, W. (2022) Structured Graph Learning for Scalable Subspace Clustering: From Single View to Multiview. IEEE Transactions on Cybernetics, 52, 8976-8986.
https://doi.org/10.1109/tcyb.2021.3061660
[31]  Zhang, C., Hu, Q., Fu, H., Zhu, P. and Cao, X. (2017) Latent Multi-View Subspace Clustering. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 4333-4341.
https://doi.org/10.1109/cvpr.2017.461
[32]  Brbić, M. and Kopriva, I. (2018) Multi-View Low-Rank Sparse Subspace Clustering. Pattern Recognition, 73, 247-258.
https://doi.org/10.1016/j.patcog.2017.08.024
[33]  Li, X., Zhang, H., Wang, R. and Nie, F. (2022) Multiview Clustering: A Scalable and Parameter-Free Bipartite Graph Fusion Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 330-344.
https://doi.org/10.1109/tpami.2020.3011148
[34]  Li, L., Wan, Z. and He, H. (2021) Incomplete Multi-View Clustering with Joint Partition and Graph Learning. IEEE Transactions on Knowledge and Data Engineering, 35, 589-602.
https://doi.org/10.1109/tkde.2021.3082470
[35]  Yin, J. and Sun, S. (2021) Incomplete Multi-View Clustering with Reconstructed Views. IEEE Transactions on Knowledge and Data Engineering, 35, 2671-2682.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133