|
Pure Mathematics 2025
拓扑学中的同伦与基本群
|
Abstract:
本文主要研究拓扑空间中同伦的相关性质,进而讨论道路的逆及乘法运算,由此得到基本群,通过证明知基本群为拓扑不变量,最后利用基本群证明二维球面S2不同胚于环面T2。
This article mainly studies the relevant properties of homotopy in topological spaces, and then discusses the inverse and multiplication operations of roads, thereby obtaining the fundamental group. By proving that the known fundamental group is a topological invariant, the fundamental group is finally used to prove that the two-dimensional sphere S2 is different from the torus T2.
[1] | 尤承业. 基础拓扑学讲义[M]. 北京: 北京大学出版社, 1997. |
[2] | 熊金城. 点集拓扑讲义[M]. 北京: 高等教育出版社, 2010. |
[3] | 张立东. 一、二维球面乘积的连通和的映射类群[D]: [硕士学位论文]. 北京: 首都师范大学, 2006. |
[4] | 张浩. 关于二维环面T2的几个结论[D]: [硕士学位论文]. 南京: 南京农业大学, 2008. |
[5] | 张海芳. 群在拓扑学中的应用[J]. 科教导刊(电子版), 2015(1): 77-78. |