全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于无人机辅助移动边缘计算的任务卸载
Task Offloading Based on UAV Assisted Mobile Edge Computing

DOI: 10.12677/pm.2025.153073, PP. 25-35

Keywords: 计算卸载,无人机,移动边缘计算,深度强化学习
Computing Offloading
, UAV, Mobile Edge Computing, Deep Reinforcement Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于无人机能够灵活部署,因此可以帮助提高覆盖范围和通信质量。本文考虑了一种无人机辅助的移动边缘计算系统,其中配备有计算资源的无人机可以向附近的用户设备提供卸载服务。用户将部分计算任务卸载到无人机,而其余任务在用户本地执行。我们的目标是通过联合优化用户任务调度、任务卸载比率、传输功率、无人机飞行角度和飞行速度到达最小化系统成本的目的。并且考虑到该优化问题是非凸的,我们提出了一种基于深度确定性策略梯度的强化学习计算卸载算法。通过该算法,我们可以在不可控的动态环境中获得最优的计算卸载策略。并且通过仿真结果表明,该算法优于其他强化学习算法。
Due to the flexible deployment of drones, they can help improve coverage and communication quality. This paper considers a UAV assisted mobile edge computing system, in which the UAV equipped with computing resources can provide unloading services to nearby user devices. Users offload some computing tasks to the drone, while the remaining tasks are executed locally by the user. Our goal is to minimize system costs by jointly optimizing user task scheduling, task offloading ratio, transmission power, drone flight angle, and flight speed. And considering that the optimization problem is non-convex, we propose a reinforcement learning computation offloading algorithm based on Soft Actor Critic. Through this algorithm, we can obtain the optimal computation offloading strategy in uncontrollable dynamic environments. And the simulation results show that this algorithm is superior to other reinforcement learning algorithms.

References

[1]  Agarwal, S., Philipose, M. and Bahl, P. (2014) Vision. Proceedings of the 5th international workshop on Mobile Cloud Computing & Services-MCS’14, Bretton Woods, 16 June 2014, 1-5.
https://doi.org/10.1145/2609908.2609946
[2]  Tran, T.X., Hajisami, A., Pandey, P. and Pompili, D. (2017) Collaborative Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios, and Challenges. IEEE Communications Magazine, 55, 54-61.
https://doi.org/10.1109/mcom.2017.1600863
[3]  Cheng, K., Fang, X. and Wang, X. (2023) Energy Efficient Edge Computing and Data Compression Collaboration Scheme for UAV-Assisted Network. IEEE Transactions on Vehicular Technology, 72, 16395-16408.
https://doi.org/10.1109/tvt.2023.3289962
[4]  Alnoman, A., Sharma, S.K., Ejaz, W. and Anpalagan, A. (2019) Emerging Edge Computing Technologies for Distributed IoT Systems. IEEE Network, 33, 140-147.
https://doi.org/10.1109/mnet.2019.1800543
[5]  Diao, X., Yang, W., Yang, L. and Cai, Y. (2021) UAV-Relaying-Assisted Multi-Access Edge Computing with Multi-Antenna Base Station: Offloading and Scheduling Optimization. IEEE Transactions on Vehicular Technology, 70, 9495-9509.
https://doi.org/10.1109/tvt.2021.3101298
[6]  Zhang, J., Zhou, L., Tang, Q., Ngai, E.C., Hu, X., Zhao, H., et al. (2019) Stochastic Computation Offloading and Trajectory Scheduling for UAV-Assisted Mobile Edge Computing. IEEE Internet of Things Journal, 6, 3688-3699.
https://doi.org/10.1109/jiot.2018.2890133
[7]  Zhan, C., Hu, H., Sui, X., Liu, Z. and Niyato, D. (2020) Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge Computing System. IEEE Internet of Things Journal, 7, 7808-7822.
https://doi.org/10.1109/jiot.2020.2993260
[8]  Zhang, L. and Ansari, N. (2020) Latency-Aware IoT Service Provisioning in UAV-Aided Mobile-Edge Computing Networks. IEEE Internet of Things Journal, 7, 10573-10580.
https://doi.org/10.1109/jiot.2020.3005117
[9]  Li, Y., Fang, Y. and Qiu, L. (2021) Joint Computation Offloading and Communication Design for Secure UAV-Enabled MEC Systems. 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, 29 March-1 April 2021, 1-6.
[10]  Cao, X., Wang, F., Xu, J., Zhang, R. and Cui, S. (2019) Joint Computation and Communication Cooperation for Energy-Efficient Mobile Edge Computing. IEEE Internet of Things Journal, 6, 4188-4200.
https://doi.org/10.1109/jiot.2018.2875246
[11]  Hu, X., Wong, K., Yang, K. and Zheng, Z. (2019) UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization. IEEE Transactions on Wireless Communications, 18, 4738-4752.
https://doi.org/10.1109/twc.2019.2928539
[12]  Hu, Q., Cai, Y., Yu, G., Qin, Z., Zhao, M. and Li, G.Y. (2019) Joint Offloading and Trajectory Design for UAV-Enabled Mobile Edge Computing Systems. IEEE Internet of Things Journal, 6, 1879-1892.
https://doi.org/10.1109/jiot.2018.2878876
[13]  Jeong, S., Simeone, O. and Kang, J. (2018) Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning. IEEE Transactions on Vehicular Technology, 67, 2049-2063.
https://doi.org/10.1109/tvt.2017.2706308

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133