全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双摆式动镜干涉仪的设计
Design of Interferometer Based on Pendulum Movable Mirror

DOI: 10.12677/iae.2025.131006, PP. 38-45

Keywords: FTIR,干涉仪,双摆式动镜,仪器设计
FTIR
, Interferometer, Double Pendulum Moving Mirror, Instrument Design

Full-Text   Cite this paper   Add to My Lib

Abstract:

用于工业现场的傅里叶变换红外光谱仪往往要求具备与实验室设备相近的性能指标,且对体积、重量、抗震等方面的要求更为严格。在完美地利用立体角镜与平面折返镜组合的光学特性基础上,设计了一种高效稳定双摆式的干涉仪结构,能够从原理上解决干涉仪调制度稳定性的问题。通过对动镜扫描系统的分析建模,建立动镜扫描速度与驱动器之间的数学关系,并利用数字信号处理器实现对其的闭环控制,使扫描误差大约在±0.2%的范围内。通过对仪器性能的测试以及标准样品的测试表明,仪器具有较高的信噪比与稳定性,能够满足工业应用的需求。
When FTIR is used in industrial applications, it often requires performance similar to laboratory equipment, and is more stringent in terms of volume, weight, and seismic resistance. A highly efficient and stable pendulum structure interferometer based on the combination of cube corner mirror and planar retro-mirror was designed, the combination of cube corner mirror and flat retro-mirror is a perfect solution for interferometer modulation depth issues, because of their own optical characteristics, in principle, tilts and shift would have no effect on the modulation depth. Through the analysis and modeling of the moving mirror scanning system, the mathematical relationship between the scanning speed and the driver is established, and a closed-loop control is realized by using the digital signal processor so that the scanning error is about ± 0.2%. Through the test of the performance of the instrument and the test of some standard samples shows that the instrument has a good signal to noise ratio and stability, to meet the needs of industrial applications.

References

[1]  Topsøe, N. (2006) In Situ FTIR: A Versatile Tool for the Study of Industrial Catalysts. Catalysis Today, 113, 58-64.
https://doi.org/10.1016/j.cattod.2005.11.010
[2]  McNab, A.I., McCue, A.J., Dionisi, D. and Anderson, J.A. (2017) Combined Quantitative FTIR and Online GC Study of Fischer-Tropsch Catalysts. Journal of Catalysis, 353, 295-304.
https://doi.org/10.1016/j.jcat.2017.07.028
[3]  Pelin Ayerden, N., Aygun, U., Holmstrom, S.T.S., Olcer, S., Can, B., Stehle, J., et al. (2014) High-speed Broadband FTIR System Using Mems. Applied Optics, 53, 7267-7272.
https://doi.org/10.1364/ao.53.007267
[4]  Mahendra, R., Kumar, D., Satyavir,, Nautiyal, B., Meena, J.R., Das, B.K., et al. (2022) Design and Fabrication of Self-Compensating ZnSe Beam Splitter in LWIR Region. Optik, 262, Article ID: 169299.
https://doi.org/10.1016/j.ijleo.2022.169299
[5]  Shi, L., Liu, J., Gao, W., Zhang, Q.X., et al. (2015) Design of a Moving Mirror Scanning System in Fourier Transform Infrared Spectrometer. Acta Photonica Sinica, 44, Article ID: 0430002.
[6]  Parmar, K., Indaco, M., Long, R., et al. (2021) Design and Analysis of Deployment Mechanics for a Self-Folding, Spiral Based Space-Borne Interferometer. 31st AAS/AIAA Space Flight Mechanics Meeting, 31 January-4 February 2021.
[7]  Shi, L., Li, K., Gao, Z.F., et al. (2013) Design of a Compact Structure Interferometer. Spectroscopy and Spectral Analysis, 33, 2294-2298.
[8]  Jensen, B.D. and Howell, L.L. (2002) The Modeling of Cross-Axis Flexural Pivots. Mechanism and Machine Theory, 37, 461-476.
https://doi.org/10.1016/s0094-114x(02)00007-1
[9]  Wang, J.W., Chen, K., Li, J., et al. (2001) Precision of Typical Flexible Hinges. Journal of Tsinghua University, 41, 49-52.
[10]  Gräb, P., Geidel, E. and Schmitt, H. (2021) Low-Cost Spectroscopy: Experiments in Various Spectral Ranges. World Journal of Chemical Education, 9, 144-151.
https://doi.org/10.12691/wjce-9-4-7
[11]  Perri, A. (2021) Visible and Near-Infrared Fourier Transform Spectroscopy with a Common-Path Interferometer. Journal of Physics B: Atomic, Molecular and Optical Physics, 54, Article ID: 113001.
https://doi.org/10.1088/1361-6455/ac02d1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133