|
灵菌红素对肺炎克雷伯菌生物膜的影响及机制研究
|
Abstract:
目的:研究灵菌红素对肺炎克雷伯菌生物膜的影响及其机制,以期为临床治疗肺炎克雷伯菌提供新的治疗思路。方法:选择肺炎克雷伯菌NTUH-K2044菌株作为实验菌株,进行药敏实验、生长曲线测定、生物膜抑制实验以及RT-PCR实验,分析灵菌红素对肺炎克雷伯菌生长和生物膜的影响及相关机制。结果:灵菌红素对肺炎克雷伯菌的MIC值为256 μg/ml,灵菌红素对肺炎克雷伯菌的MBIC为64 μg/ml。灵菌红素在12 h内对肺炎克雷伯菌的I型菌毛基因(fimA, fimH, fimK)、III型菌毛基因(mrkD, mrkH)、荚膜多糖基因rmpA和毒力基因magA有抑制作用。灵菌红素在24 h时,对肺炎克雷伯菌生物膜的相关基因(除fimA,rmpA外)有负向调控作用。结论:灵菌红素能抑制肺炎克雷伯菌生长和生物膜形成,其可能的机制是下调肺炎克雷伯菌生物膜的相关基因(fimA, fimH, fimK, mrkD, mrkH, rmpA, magA)表达量。
Objective: To investigate the effects of prodigiosin on the biofilm of Klebsiella pneumoniae and its mechanism, so as to provide a new therapeutic idea for the clinical treatment of Klebsiella pneumoniae. Methods: The NTUH-K2044 strain of Klebsiella pneumoniae was selected as the experimental strain. Antimicrobial susceptibility tests, growth curve determination, biofilm inhibition experiments, and RT-PCR experiments were performed to analyze the effects of prodigiosin on the growth and biofilm of Klebsiella pneumoniae and the related mechanisms. Results: The MIC value of prodigiosin against Klebsiella pneumoniae was 256 μg/ml, and the MBIC was 64 μg/ml. Prodigiosin had inhibitory effects on the type I fimbrial genes (fimA, fimH, fimK), type III fimbrial genes (mrkD, mrkH), capsular polysaccharide gene rmpA, and virulence gene magA of Klebsiella pneumoniae within 12 hours. At 24 hours, prodigiosin had negative regulatory effects on the biofilm-related genes of Klebsiella pneumoniae (except for fimA and rmpA). Conclusion: Prodigiosin can inhibit the growth and biofilm formation of Klebsiella pneumoniae, and its possible mechanism is to downregulate the expression of biofilm-related genes (fimA, fimH, fimK, mrkD, mrkH, rmpA, magA) of Klebsiella pneumoniae.
[1] | Wang, G., Zhao, G., Chao, X., Xie, L. and Wang, H. (2020) The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17, Article 6278. https://doi.org/10.3390/ijerph17176278 |
[2] | Han, X., Yao, J., He, J., Liu, H., Jiang, Y., Zhao, D., et al. (2024) Clinical and Laboratory Insights into the Threat of Hypervirulent Klebsiella pneumoniae. International Journal of Antimicrobial Agents, 64, Article ID: 107275. https://doi.org/10.1016/j.ijantimicag.2024.107275 |
[3] | Zhao, A., Sun, J. and Liu, Y. (2023) Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Frontiers in Cellular and Infection Microbiology, 13, Article 1137947. https://doi.org/10.3389/fcimb.2023.1137947 |
[4] | Schilcher, K. and Horswill, A.R. (2020) Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiology and Molecular Biology Reviews, 84, e00026-19. https://doi.org/10.1128/mmbr.00026-19 |
[5] | Kranjec, C., Morales Angeles, D., Torrissen Mårli, M., Fernández, L., García, P., Kjos, M., et al. (2021) Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics, 10, Article 131. https://doi.org/10.3390/antibiotics10020131 |
[6] | Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S. and Ciofu, O. (2010) Antibiotic Resistance of Bacterial Biofilms. International Journal of Antimicrobial Agents, 35, 322-332. https://doi.org/10.1016/j.ijantimicag.2009.12.011 |
[7] | Silveira, G.G.O.S., Torres, M.D.T., Ribeiro, C.F.A., Meneguetti, B.T., Carvalho, C.M.E., de la Fuente-Nunez, C., et al. (2021) Antibiofilm Peptides: Relevant Preclinical Animal Infection Models and Translational Potential. ACS Pharmacology & Translational Science, 4, 55-73. https://doi.org/10.1021/acsptsci.0c00191 |
[8] | Horng, Y., Dewi Panjaitan, N.S., Chang, H., Wei, Y., Chien, C., Yang, H., et al. (2022) A Protein Containing the DUF1471 Domain Regulates Biofilm Formation and Capsule Production in Klebsiella pneumoniae. Journal of Microbiology, Immunology and Infection, 55, 1246-1254. https://doi.org/10.1016/j.jmii.2021.11.005 |
[9] | Kot, B., Piechota, M., Szweda, P., Mitrus, J., Wicha, J., Grużewska, A., et al. (2023) Virulence Analysis and Antibiotic Resistance of Klebsiella pneumoniae Isolates from Hospitalised Patients in Poland. Scientific Reports, 13, Article No. 4448. https://doi.org/10.1038/s41598-023-31086-w |
[10] | Lopatto, E.D.B., Pinkner, J.S., Sanick, D.A., Potter, R.F., Liu, L.X., Bazán Villicaña, J., et al. (2024) Conformational ensembles in Klebsiella pneumoniae FimH Impact Uropathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 121, e2409655121. https://doi.org/10.1073/pnas.2409655121 |
[11] | 孙晓雨. 茯苓多糖在貂源肺炎克雷伯菌菌毛粘附蛋白黏膜免疫中的佐剂效应[D]: [硕士毕业论文]. 长春: 吉林大学, 2015. |
[12] | 王一鸣. 丁香酚抑制猪源肺炎克雷伯菌AI-2信号分子和MrkD蛋白机制研究[D]: [博士学位论文]. 长春: 吉林农业大学, 2019. |
[13] | Schroll, C., Barken, K.B., Krogfelt, K.A. and Struve, C. (2010) Role of Type 1 and Type 3 Fimbriae in Klebsiella pneumoniae Biofilm Formation. BMC Microbiology, 10, Article No. 179. https://doi.org/10.1186/1471-2180-10-179 |
[14] | Islan, G.A., Rodenak-Kladniew, B., Noacco, N., Duran, N. and Castro, G.R. (2022) Prodigiosin: A Promising Biomolecule with Many Potential Biomedical Applications. Bioengineered, 13, 14227-14258. https://doi.org/10.1080/21655979.2022.2084498 |
[15] | Lapenda, J.C., Silva, P.A., Vicalvi, M.C., Sena, K.X.F.R. and Nascimento, S.C. (2014) Antimicrobial Activity of Prodigiosin Isolated from Serratia Marcescens UFPEDA 398. World Journal of Microbiology and Biotechnology, 31, 399-406. https://doi.org/10.1007/s11274-014-1793-y |
[16] | 严静. 沙雷氏菌CM01来源灵菌红素对临床耐药金黄色葡萄球菌抗生物膜活性及机制研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2023. |
[17] | 刘冬梅, 郭梦雨, 费冰, 等. 黄连素抑制肺炎克雷伯菌生物膜形成作用机制研究[J]. 中国现代医药杂志, 2024, 26(1): 6-10. |
[18] | Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M.A., et al. (2018) Bacterial Biofilm and Associated Infections. Journal of the Chinese Medical Association, 81, 7-11. https://doi.org/10.1016/j.jcma.2017.07.012 |
[19] | Clements, T., Ndlovu, T. and Khan, W. (2019) Broad-Spectrum Antimicrobial Activity of Secondary Metabolites Produced by Serratia Marcescens Strains. Microbiological Research, 229, Article ID: 126329. https://doi.org/10.1016/j.micres.2019.126329 |
[20] | Ma, Z., Xiao, H., Li, H., Lu, X., Yan, J., Nie, H., et al. (2024) Prodigiosin as an Antibiofilm Agent against the Bacterial Biofilm-Associated Infection of Pseudomonas Aeruginosa. Pathogens, 13, Article 145. https://doi.org/10.3390/pathogens13020145 |