全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impact of Early Food Diversification on the Composition of the Gut Microbiota in Infants during the First 200 Days of Life from Three Municipalities in the District of Abidjan

DOI: 10.4236/jbm.2025.133008, PP. 87-105

Keywords: Infant Gut Microbiota, Breastfeeding, Formula Feeding, Complementary Food, Illumina Sequencing

Full-Text   Cite this paper   Add to My Lib

Abstract:

The gastrointestinal microbiota plays a crucial role in host health by modulating nutrition and disease processes. Although gut microbial composition is known to vary with diet, few studies have explored how specific infant diets influence the gut microbiota. This study compares the fecal microbiota profiles of three groups of infants: those exclusively breastfed with complementary food (BF + FD), formula-fed with complementary food (FF + FD), and infants receiving a combination of breast milk, formula, and complementary food (BF + FF + FD). Fecal microbiota was analyzed through Illumina high-throughput sequencing. The results reveal that Actinobacteria and Bacteroides are the dominant phyla across all groups. However, Firmicutes and Bacteroidetes are underrepresented in infants fed with FF + FD. Among infants on the BF + FD diet, Bifidobacterium (17.84%), Escherichia-Shigella (9.37%), and Streptococcus (7.4%) were the most prevalent. In the FF + FD group, Bifidobacterium (24.33%) and Escherichia-Shigella (14.35%) dominated. The BF + FF + FD group showed similar trends, with Bifidobacterium (14.99%), Escherichia-Shigella (9.17%), and Streptococcus (7.68%) prevailing (p = 0.05). Age also influenced microbial composition. Between 0 - 119 days, Bifidobacterium (15.70%) and Enterobacteriaceae (11.28%) predominated, while at 120 - 179 days, these proportions shifted to 20.62% and 8.95%, respectively. By 200 days, Bifidobacterium and Enterobacteriaceae were still present but in lower proportions (14% and 9.31%).

References

[1]  Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. and Knight, R. (2012) Diversity, Stability and Resilience of the Human Gut Microbiota. Nature, 489, 220-30.
https://doi.org/10.1038/nature11550
[2]  Rodríguez, J.M., Murphy, K., Stanton, C., Ross, R.P., Kober, O.I., Judge, N., et al. (2015) The Composition of the Gut Microbiota throughout Life, with an Emphasis on Early Life. Microbial Ecology in Health and Disease, 26, Article 26050.
[3]  Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F. and Mahony, J. (2017) Early Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 81, e00036-17.
https://doi.org/10.1128/MMBR.00036-17
[4]  Stewart, C.J., Ajami, N.J., O’Brien, J.L., Hutchinson, D.S., Smith, D.P. and Wong, M.C. (2018) Temporal Development of the Gut Microbiome in Infancy from the TEDDY Study. Nature, 562, 583-588.
https://doi.org/10.1038/s41586-018-0617-x
[5]  Galazzo, G., van Best, N., Bervoets, L., Dapaah, I.O., Savelkoul, P.H. and Hornef, M.W. (2020) Development of the Microbiota and Associations with Mode of Birth, Diet and Atopic Disorders in a Longitudinal Analysis of Stool Samples, Collected from Infancy to Early Childhood. Gastroenterology, 158, 1584-1596.
https://doi.org/10.1053/j.gastro.2020.01.024
[6]  Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L.G., Gratadoux, J.J., Blugeon, S., Bridonneau, C., Furet, J.P., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottière, H.M., Doré, J., Marteau, P., Seksik, P. and Langella, P. (2008) Faecalibacterium Prausnitzii is a Commensal Anti-Inflammatory Bacterium Identified by Analysis of the Intestinal Microbiota of Patients with Crohn’s Disease. Proceedings of the National Academy of Sciences, 105, 16731-16736.
https://doi.org/10.1073/pnas.0804812105
[7]  Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., van den Brandt, P.A. and Stobberingh, E.E. (2006) Factors Influencing Gut Microbiota Composition in Early Childhood. Pediatrics, 118, 511-521.
https://doi.org/10.1542/peds.2005-2824
[8]  Fan, W.G., Huo, G.C., Li, X.M., Yang, L.J. and Duan, C.C. (2014) Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Infants during the Six Months of Life. Journal of Microbiology and Biotechnology, 24, 133-143.
https://doi.org/10.4014/jmb.1309.09029
[9]  Marchesi, J.R., Adams, D.H., Fava, F., Hermes, G.D., Hirschfield, G.M., Hold, G. (2016) Gut Microbiota and Host Health: A New Clinical Frontier. Gut, 65, 330-339.
https://doi.org/10.1136/gutjnl-2015-309990
[10]  Liu, P.-Y., Wu, W.-K., Chen, C.-C., Panyod, S., Sheen, L.-Y. and Wu, M.S. (2020) Evaluation of Compatibility of 16S rRNA V3V4 and V4 Amplicon Libraries for Clinical Microbiome Profiling. 40 p.
[11]  Andrews, S.A. (2017) FastQC: A Quality Control Tool for High Throughput Sequence Data.
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
[12]  Ewels, P.A. (2026) MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics, 32, 3047-3048.
https://doi.org/10.1093/bioinformatics/btw354
[13]  Bolger, A.M. (2014) Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics, 30, 2114-2120.
https://doi.org/10.1093/bioinformatics/btu170
[14]  Callahan, B.J., McMurdie, P.J., Han, A.W., et al. (2016) DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nature Methods, 13, 581-583.
https://doi.org/10.1101/024034
[15]  McMurdie, P.J. and Holmes, S. (2013) Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8, e61217.
https://doi.org/10.1371/journal.pone.0061217
[16]  Davis, N.M. (2018) Simple Statistical Identification and Removal of Contaminant Sequences in Markergene and Metagenomics Data. Microbiome, 6, Article No. 226.
https://doi.org/10.1186/s40168-018-0605-2
[17]  Dixon, P. (2003) VEGAN, a Package of R Functions for Community Ecology. Journal of Vegetation Science, 14, 927-930.
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
[18]  Quast, C., Pruesse, E., Yilmaz, P., et al. (2012) The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Research, 41, D590-D596.
https://doi.org/10.1093/nar/gks1219
[19]  Love, M.I., Huber, W. and Anders, S. (2014) Moderated Estimation of Fold Change and Dispersion for RNA-seq Data with DESeq2. Genome Biology, 15, Article No. 550.
https://doi.org/10.1186/s13059-014-0550-8
[20]  Bäckhed, F., Ley, R.E., Sonnenburg, J.L. Peterson, D.A. and Gordon, J.I. (2005) Host-Bacterial Mutualism in the Human Intestine. Science, 307, 1915-1920.
https://doi.org/10.1126/science.1104816
[21]  Wopereis, H., Oozeer, R., Knipping, K., Belzer, C. and Knol, J. (2014) The First Thousand Days—Intestinal Microbiology of Early Life: Establishing a Symbiosis. Pediatric Allergy and Immunology, 25, 428-438.
https://doi.org/10.1111/pai.12232
[22]  Freyssinet, L. (2017) Involvement of the Intestinal Microbiota in Health and Therapeutic Issues. Thesis for the State Diploma of Doctor of Pharmacy, University Toulouse III Paul Sabatier France.
[23]  Differding, M.K., Benjamin-Neelon, S.E. and Hoyo, C. (2020) Timing of Complementary Feeding Is Associated with Gut Microbiota Diversity and Composition and Short Chain Fatty Acid Concentrations over the First Year of Life. BMC Microbiology, 20, Article No. 56.
https://doi.org/10.1186/s12866-020-01723-9
[24]  Martín, R., Langa, S., Reviriego, C., Jiminez, E., Marín, M.L. and Xaus, J. (2003) Human Milk Is a Source of Lactic Acid Bacteria for the Infant Gut. The Journal of Pediatrics, 143, 754-758.
https://doi.org/10.1016/j.jpeds.2003.09.028
[25]  Martín, R., Heilig, G.H.J., Zoetendal, E.G., Smidt, H. and Rodriguez, J.M. (2007) Diversity of the Lactobacillus Group in Breast Milk and Vagina of Healthy Women and Potential Role in the Colonization of the Infant Gut. Journal of Applied Microbiology, 103, 2638-2644.
https://doi.org/10.1111/j.1365-2672.2007.03497.x
[26]  Moore, T.A., Hanson, C.K. and Anderson-Berry, A. (2011) Colonization of the Gastrointestinal Tract in Neonates: A Review. ICAN: Infant, Child, & Adolescent Nutrition, 3, 291-295.
https://doi.org/10.1177/1941406411421629
[27]  Przyrembel, H. (2012) Timing of Introduction of Complementary Food: Short-and Long-Term Health Consequences. Annals of Nutrition and Metabolism, 60, 8-20.
https://doi.org/10.1159/000336287
[28]  Forbes, J.D., Chen, C.Y., Knox, N.C., Marrie, R.A., El-Gabalawy, H. and de Kievit, T. (2018) A Comparative Study of the Gut Microbiota in Immune-Mediated Inflammatory Diseases—Does a Common Dysbiosis Exist? Microbiome, 6, Article No. 221.
https://doi.org/10.1186/s40168-018-0603-4
[29]  Singh, S., Karagas, M.R. and Mueller, N.T. (2017) Charting the Maternal and Infant Microbiome: What Is the Role of Diabetes and Obesity in Pregnancy? Current Diabetes Reports, 17, Article No. 11.
https://doi.org/10.1007/s11892-017-0836-9
[30]  Moira, M., Cattaneo, A., Mirabelli, P., Festari, C., Lopizzo, N., Nicolosi, V., Mombelli, E., Mazzelli, M., Luongo, D., Naviglio, D., Coppola, L., Salvatore, M. and Frisoni, G.B. (2020) Short-Chain Fatty Acids and Lipopolysaccharide as Mediators between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Disease. Journal of Alzheimers Disease, 78, 683-697.
https://doi.org/10.3233/JAD-200306
[31]  Pluznick, J.L. (2017) Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Current Hypertension Reports, 19, Article No. 25.
https://doi.org/10.1007/s11906-017-0722-5
[32]  Laursen, M.F. (2021) Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. Annals of Nutrition and Metabolism, 77, 21-34.
https://doi.org/10.1159/000517912
[33]  Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., Kayser, B.D., Levenez, F., Chilloux, J. and Hoyles, L. Consortium, M.-O., Dumas M.E., Rizkalla, S.W., Doré, J., Cani, P.D. and Clément, K. (2016) Akkermansia muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut Microbiota, 65, 426-36.
https://doi.org/10.1136/gutjnl-2014-308778
[34]  Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., Falony, G., Raes, J., Maiter, D., Delzenne, N.M., de Barsy, M., Loumaye, A., Hermans, M.P., Thissen, J.P., de Vos, W.M. and Cani, P.D. (2019) Supplementation with Akkermansia muciniphila in Overweight and Obese Human Volunteers: A Proof-of-Concept Exploratory Study. Nature Medicine, 25, 1096-1103.
https://doi.org/10.1038/s41591-019-0495-2
[35]  Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J. and Knight, R., Angenent, L.T. and Ley, R.E. (2011) Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proceedings of the National Academy of Sciences, 108, 4578-4585.
https://doi.org/10.1073/pnas.1000081107

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133