全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深层超稠油油藏注多元热流体降粘增效机制
Mechanism of Viscosity Reduction and Efficiency Enhancement by Injection of Multi-Component Thermal Fluid in Deep Ultra-Heavy Oil Reservoirs

DOI: 10.12677/jogt.2025.471001, PP. 1-8

Keywords: 深层油藏,超稠油,热采开发,多元热流体
Deep Reservoir
, Extra Heavy Oil, Thermal Recovery Development, Multi-Component Thermal Fluid

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对深层超稠油油藏,常规蒸汽热采难以有效动用是面临的主要问题。运用油藏工程方法、物理模拟实验和数值模拟方法相结合的方法,采用商业软件PVTsim计算地层温度、压力下注入多元热流体后超稠油的粘度变化,评估注入多元热流体后的产能和采出情况。研究表明在地层压力30 MPa下,注入多元热流体后,在100?C、二氧化碳溶解度80,120?C、二氧化碳溶解度50时,超稠油的粘度分别从18,000 mPa?s下降到622.8 mPa?s和709.4 mPa?s,温度和气体的综合效应下形成以温度、溶解度和粘度划分的高、中、低三个不同区域。根据动用的直井段长度,其产能可达7~34 m3/d。针对深层超稠油油藏采用多元热流体热采,相比常规的蒸汽吞吐该技术可充分发挥气体溶解降粘、增能保压、提升举升效率等优势,为深层超稠油油藏的高效开发探索了一条新路径。
Aiming at the deep ultra-thick oil reservoir, it is difficult to use effectively conventional steam thermal recovery to extract heavy oil. It was studied by using a combination of reservoir engineering methods, physical simulation experiments and numerical simulation methods. By using the commercial software PVTsim to calculate the viscosity change of ultra-thick oil after injection of multi-component thermal fluid under formation temperature and pressure, it can be evaluated the production capacity and recovery after injection of multi-component thermal fluid. The study shows that the viscosity of ultra-thick oil decreases from 18,000 mPa?s to 622.8 mPa?s and 709.4 mPa?s at 100?C, CO2 solubility of 80 and 120?C, CO2 solubility of 50 respectively, under the formation pressure of 30 MPa, after the multi-component thermal fluid is injected. The three different zones are formed under the combined effect of temperature and gas, which are classified by temperature, solubility and viscosity. In the end, the production capacity can be up to 7~34 m3/d depending on the length of the straight well section. Multi-component thermal fluid thermal recovery for deep ultra-thick oil reservoirs can make full use of the advantages of gas dissolution to reduce viscosity, increasing the energy to maintain pressure and improving the lifting efficiency compared with the conventional steam throughput, which has explored a new way for high-efficiency development of deep ultra-thick oil reservoirs.

References

[1]  党法强, 李松岩, 李明鹤, 等. 深层稠油油藏降粘泡沫驱驱油特征及机理研究[J]. 油气地质与采收率, 2024, 31(2): 128-137.
[2]  张明敏. 鲁克沁深层稠油泡沫驱技术研究与实践[D]: [硕士学位论文]. 东营: 中国石油大学(华东), 2023.
[3]  Bodoor, B., Jesudian, D.N., Al-Otaibi, B., Ibrahim, H., Chao, C., Le, V., et al. (2023) Comprehensive Study on Ultra-Heavy Oil Deposition in North Kuwait and Successful Fluid Sampling for Field Development Studies: Case Study. Middle East Oil, Gas and Geosciences Show, Manama, 19-21 February 2023, SPE-213242-MS.
https://doi.org/10.2118/213242-ms
[4]  石彦, 谢俊辉, 郭小婷, 等. 新疆油田中深层稠油CO2驱/吞吐实验研究[J]. 油气藏评价与开发, 2024, 14(1): 76-82.
[5]  徐君. 深层稠油油藏天然气吞吐机理、方法研究及应用[D]: [博士学位论文]. 北京: 中国地质大学, 2020.
[6]  黄爽. 中深层稠油油藏多元热流体吞吐转蒸汽驱研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2022
[7]  张娜. 深层稠油油藏开发技术综述[J]. 石化技术, 2019, 26(4): 140+142.
[8]  孙永涛. 渤海稠油多元热流体开采机理研究及应用[D]: [博士学位论文]. 东营: 中国石油大学(华东), 2024.
[9]  熊钰, 王冲. 基于经验公式的超临界CO2饱和稠油粘度计算方法[J]. 油气储运, 2016, 35(10): 1072-1077.
[10]  林涛, 孙永涛, 刘海涛, 等. CO2, N2与蒸汽混合增效作用研究[J]. 断块油气田, 2013, 20(2): 246-247+267.
[11]  林涛, 孙永涛, 孙玉豹, 等. 多元热流体返出气增产技术研究[J]. 断块油气田, 2013, 20(1): 126-128.
[12]  范昕涵, 黄世军, 赵凤兰, 等. 多元热流体不同组成介质耦合作用机理微观实验[J]. 中国海上油气, 2024, 36(2): 119-128.
[13]  林涛, 宋宏志, 孙玉豹, 等. 高温高压可视化物理模拟实验装置研制[J]. 实验室研究与探索, 2021, 40(7): 76-79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133