|
基于MaxEnt优化模型的气候变化背景下入侵植物喀西茄在中国的潜在风险区预测
|
Abstract:
气候是影响植物分布格局的关键生态因素之一。作为外来入侵植物,喀西茄(Solanum aculeatissimum Jacq.)已对中国的生态安全和粮食安全构成严重威胁。因此,深入研究气候变化与喀西茄分布格局之间的关系,将有助于制定全面的入侵植物的控制战略,保护当地的生态环境。本研究基于中国境内513条喀西茄分布记录和14个主要影响因子,运用R语言ENMeval包调整调控倍频(RM)和特征组合(FC)优化的MaxEnt模型,分析影响喀西茄分布的环境因子,并预测其在当前、未来2041~2060年(2050s)和2061~2080年(2070s) 3种不同气候变化情境(SSP126、SSP370和SSP585)下的潜在入侵风险区的分布格局及其质心迁移路径。结果表明:(1) 当参数设定为RM = 0.5和FC = LQ时,MaxEnt模型的结果表现出较高的预测精度(AUC = 0.96)且过拟合程度较低(Delta. AICc = 0);(2) 最冷季平均气温(bio11)、人类足迹指数(Hf)、最暖季降水量(bio18)和海拔(elev)是影响喀西茄分布的主要因素,其中最冷季平均气温是最关键的环境因子;(3) 当前气候条件下,喀西茄在中国的潜在入侵风险面积为517.24 × 104 km2,约占全国总面积的53.88%,主要分布在中国西南部及台湾地区;(4) 在未来气候变化情境下,喀西茄的潜在风险区域面积将随着时间的推移逐步扩大;(5) 从当前到未来(2050s和2070s),在不同气候变化情境下喀西茄入侵风险区的质心迁移路径基本一致,均向西北方向移动。这表明未来应特别关注我国西北地区的入侵风险,并提前制定和部署针对性的防控措施。
Climate is a crucial ecological factor influencing plant distribution patterns. As an invasive species, Solanum aculeatissimum Jacq. poses a serious threat to both ecological and food security in China. Therefore, a comprehensive investigation into the relationship between climate change and the distribution of Solanum aculeatissimum Jacq. is essential for formulating effective strategies to control this invasive species and protect local ecosystems. This study analyses 513 distribution records of Solanum aculeatissimum Jacq. in China along with 14 key environmental variables. MaxEnt models were optimized using the R package ENMeval by tuning regularization multiplier (RM) and feature combination (FC) to analyse the environmental factors influencing the species’ distribution. It predicts the distribution pattern and centroid migration paths of potential invasion risk areas for Solanum aculeatissimum Jacq. under three different climate change scenarios (SSP126, SSP370, and SSP585) for the current period, the future 2041~2060 (2050s), and 2061~2080 (2070s). The results indicate that (1) when the parameters are set to RM = 0.5 and FC = LQ, the MaxEnt model demonstrates high predictive accuracy (AUC = 0.96) and minimal overfitting (Delta. AICc = 0). (2) The average temperature of the coldest season (bio11), human footprint (Hf), precipitation of the warmest season (bio18), and elevation (elev) are the primary factors influencing Solanum aculeatissimum Jacq. distribution, with the average temperature of the coldest season
[1] | Alan Pounds, J., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P.L., Foster, P.N., et al. (2006) Widespread Amphibian Extinctions from Epidemic Disease Driven by Global Warming. Nature, 439, 161-167. https://doi.org/10.1038/nature04246 |
[2] | Jiang, X., Liu, W., Zhu, Y., Cao, Y., Yang, X., Geng, Y., et al. (2023) Impacts of Climate Changes on Geographic Distribution of Primula Filchnerae, an Endangered Herb in China. Plants, 12, Article No. 3561. https://doi.org/10.3390/plants12203561 |
[3] | Robinson, T.B., Martin, N., Loureiro, T.G., Matikinca, P. and Robertson, M.P. (2020) Double Trouble: The Implications of Climate Change for Biological Invasions. NeoBiota, 62, 463-487. https://doi.org/10.3897/neobiota.62.55729 |
[4] | Merow, C., Bois, S.T., Allen, J.M., Xie, Y. and Silander, J.A. (2017) Climate Change both Facilitates and Inhibits Invasive Plant Ranges in New England. Proceedings of the National Academy of Sciences, 114, E3276-E3284. https://doi.org/10.1073/pnas.1609633114 |
[5] | Shi, X., Wang, J., Zhang, L., Chen, S., Zhao, A., Ning, X., et al. (2023) Prediction of the Potentially Suitable Areas of Litsea Cubeba in China Based on Future Climate Change Using the Optimized Maxent Model. Ecological Indicators, 148, Article ID: 110093. https://doi.org/10.1016/j.ecolind.2023.110093 |
[6] | Sun, S., Zhang, Y., Huang, D., Wang, H., Cao, Q., Fan, P., et al. (2020) The Effect of Climate Change on the Richness Distribution Pattern of Oaks (Quercus L.) in China. Science of the Total Environment, 744, Article ID: 140786. https://doi.org/10.1016/j.scitotenv.2020.140786 |
[7] | 刘祺, 唐涛, 李建军, 等. 壶瓶山国家级自然保护区毛冠鹿适生区评估[J]. 中国环境科学, 2024, 44(5): 2619-2629. |
[8] | Zhao, R., Wang, S. and Chen, S. (2024) Predicting the Potential Habitat Suitability of Saussurea Species in China under Future Climate Scenarios Using the Optimized Maximum Entropy (Maxent) Model. Journal of Cleaner Production, 474, Article ID: 143552. https://doi.org/10.1016/j.jclepro.2024.143552 |
[9] | Hu, W., Wang, Y., Dong, P., Zhang, D., Yu, W., Ma, Z., et al. (2020) Predicting Potential Mangrove Distributions at the Global Northern Distribution Margin Using an Ecological Niche Model: Determining Conservation and Reforestation Involvement. Forest Ecology and Management, 478, Article ID: 118517. https://doi.org/10.1016/j.foreco.2020.118517 |
[10] | 晁碧霄, 王玉玉, 俞炜炜, 等. 广东省土地利用驱动下红树林潜在生境预测[J]. 中国环境科学, 2021, 41(11): 5282-5291. |
[11] | 李国庆, 刘长成, 刘玉国, 等. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16): 4827-4835. |
[12] | Qin, X. and Li, M. (2023) Predicting the Potential Distribution of Oxalis Debilis Kunth, an Invasive Species in China with a Maximum Entropy Model. Plants, 12, Article No. 3999. https://doi.org/10.3390/plants12233999 |
[13] | 陈思明. 互花米草(Spartina alterniflora)潜在分布格局的空间尺度效应[J]. 生态学报, 2023, 43(14): 6058-6068. |
[14] | Huang, T., Yang, T., Wang, K. and Huang, W. (2024) Assessing the Current and Future Potential Distribution of Solanum Rostratum Dunal in China Using Multisource Remote Sensing Data and Principal Component Analysis. Remote Sensing, 16, Article No. 271. https://doi.org/10.3390/rs16020271 |
[15] | 林敬梧, 桂东伟. 火炬树在北美和中国空间分布差异对比及防范入侵措施[J]. 生态学报, 2024, 44(4): 1692-1699. |
[16] | 黄振. 喀西茄Solanum khasianum形态特征·分布与危害研究[J]. 安徽农业科学, 2024, 52(1): 148-150+154. |
[17] | Ghimire, B.K., Yu, C.Y. and Chung, I. (2011) Direct Shoot Organogenesis and Assessment of Genetic Stability in Regenerants of Solanum aculeatissimum Jacq. Plant Cell, Tissue and Organ Culture (PCTOC), 108, 455-464. https://doi.org/10.1007/s11240-011-0057-x |
[18] | Zhou, X., Bao, S., Liu, J., Yang, Y. and Zhuang, Y. (2018) Production and Characterization of an Amphidiploid Derived from Interspecific Hybridization between Solanum melongena L. and Solanum aculeatissimum Jacq. Scientia Horticulturae, 230, 102-106. https://doi.org/10.1016/j.scienta.2017.11.024 |
[19] | Elith, J. and Franklin, J. (2013) Species Distribution Modeling. In: Encyclopedia of Biodiversity, Elsevier, 692-705. https://doi.org/10.1016/b978-0-12-384719-5.00318-x |
[20] | Zhang, H., Zhang, X., Zhang, G., Sun, X., Chen, S. and Huang, L. (2024) Assessing the Quality Ecology of Endemic Tree Species in China Based on Machine Learning Models and UPLC Methods: The Example of Eucommia ulmoides Oliv. Journal of Cleaner Production, 452, Article ID: 142021. https://doi.org/10.1016/j.jclepro.2024.142021 |
[21] | Zhang, L., Jiang, B., Meng, Y., Jia, Y., Xu, Q. and Pan, Y. (2024) The Influence of Climate Change on the Distribution of Hibiscus mutabilis in China: Maxent Model-Based Prediction. Plants, 13, Article No. 1744. https://doi.org/10.3390/plants13131744 |
[22] | Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., et al. (2017) The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Global Environmental Change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 |
[23] | Otto-Bliesner, B.L., Marshall, S.J., Overpeck, J.T., Miller, G.H. and Hu, A. (2006) Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation. Science, 311, 1751-1753. https://doi.org/10.1126/science.1120808 |
[24] | Zheng, T., Sun, J., Shi, X., Liu, D., Sun, B., Deng, Y., et al. (2022) Evaluation of Climate Factors Affecting the Quality of Red Huajiao (Zanthoxylum bungeanum Maxim.) Based on UPLC-MS/MS and Maxent Model. Food Chemistry: X, 16, Article ID: 100522. https://doi.org/10.1016/j.fochx.2022.100522 |
[25] | 王俊伟, 陈永豪, 许敏, 等. 气候变化背景下入侵植物曼陀罗在西藏的潜在风险区预测[J]. 生态学报, 2023, 43(20): 8620-8630. |
[26] | 张杰, 张旸, 李敏, 等. 3种茄科入侵植物在我国的潜在地理分布及气候适生性分析[J]. 南方农业学报, 2019, 50(1): 81-89. |
[27] | Warren, D.L., Wright, A.N., Seifert, S.N. and Shaffer, H.B. (2013) Incorporating Model Complexity and Spatial Sampling Bias into Ecological Niche Models of Climate Change Risks Faced by 90 California Vertebrate Species of Concern. Diversity and Distributions, 20, 334-343. https://doi.org/10.1111/ddi.12160 |
[28] | Phillips, S.J. and Dudík, M. (2008) Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography, 31, 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x |
[29] | Warren, D.L. and Seifert, S.N. (2011) Ecological Niche Modeling in Maxent: The Importance of Model Complexity and the Performance of Model Selection Criteria. Ecological Applications, 21, 335-342. https://doi.org/10.1890/10-1171.1 |
[30] | Swets, J.A. (1988) Measuring the Accuracy of Diagnostic Systems. Science, 240, 1285-1293. https://doi.org/10.1126/science.3287615 |
[31] | Jenks, G.F. (1967) The Data Model Concept in Statistical Mapping. International Yearbook of Cartography, 7, 186-190. |
[32] | Li, Y., Li, M., Li, C. and Liu, Z. (2020) Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China. Forests, 11, Article No. 302. https://doi.org/10.3390/f11030302 |
[33] | Yousaf, A., Hadi, R., Khan, N., Ibrahim, F., Moin, H., Rahim, S., et al. (2022) Identification of Suitable Habitat for Taxus wallichiana and Abies pindrow in Moist Temperate Forest Using Maxent Modelling Technique. Saudi Journal of Biological Sciences, 29, Article ID: 103459. https://doi.org/10.1016/j.sjbs.2022.103459 |
[34] | 马晨晨, 吴雪惠, 赵廖成, 等. 外来入侵植物喀西茄的危害特点与分布现状[J]. 生物灾害科学, 2023, 46(2): 121-126. |
[35] | He, Y., Ma, J. and Chen, G. (2023) Potential Geographical Distribution and Its Multi-Factor Analysis of Pinus massoniana in China Based on the Maxent Model. Ecological Indicators, 154, Article ID: 110790. https://doi.org/10.1016/j.ecolind.2023.110790 |
[36] | Yang, X., Liu, F., Zhang, Y., Wang, L. and Cheng, Y. (2017) Cold-Responsive miRNAs and Their Target Genes in the Wild Eggplant Species Solanum aculeatissimum. BMC Genomics, 18, Article No. 1000. https://doi.org/10.1186/s12864-017-4341-y |
[37] | 唐瑶. 气候变化条件下四种入侵植物在我国潜在分布预测分析[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2018. |
[38] | Krigas, N., Tsiafouli, M.A., Katsoulis, G., Votsi, N. and van Kleunen, M. (2021) Investigating the Invasion Pattern of the Alien Plant Solanum elaeagnifolium Cav. (Silverleaf nightshade): Environmental and Human-Induced Drivers. Plants, 10, Article No. 805. https://doi.org/10.3390/plants10040805 |
[39] | 李蕴. 铝胁迫对喀西茄和车前生理生态特征的影响[D]: [硕士学位论文]. 重庆: 西南大学, 2008. |
[40] | 吴雪惠. 江西省外来植物现状调查与研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2021. |
[41] | 巢清尘, 李柔珂, 崔童, 等. 中国气候变化科学认识进展及未来展望——中国《第四次气候变化国家评估报告·第一部分》解读[J]. 中国人口·资源与环境, 2023, 33(1): 74-79. |
[42] | 丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势[J]. 气候变化研究进展, 2006, 2(1): 3-8+50. |