|
Material Sciences 2025
原位生长氧化镍/碳纳米管的自支撑电极用于锌空气电池
|
Abstract:
锌空气电池具有能量密度高、成本低等优点,是最具前途的绿色储能技术之一,开发用于空气阴极氧还原反应(ORR)和析氧反应(OER)的非贵金属催化剂至关重要。本文提出了一种新型高效的制备方法,通过热处理与电沉积技术,以不锈钢网为基底原位生长NiO包裹的氮掺杂碳纳米管三维网络(NiO-CNT/SS)。得益于碳纳米管的独特三维结构,使其可以暴露出更多的活性位点,所制备催化剂OER性能优良,在100 mA cm?2电流密度下过电位仅为374 mV。此外,NiO-CNT/SS材料所组装的锌空气电池具有1.44 V开路电压以及优异的循环稳定性,在5 mA cm?2电流密度下可以稳定循环145 h而无明显衰减。
Zn-air battery has been regarded as one of the most promising green energy storage technologies due to its high energy density and low cost. It is very important to develop non-noble metal catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this paper, a new and efficient preparation method is proposed to develop three-dimensional network of nitrogen-doped carbon nanotubes wrapped by NiO (NiO-CNT/SS) in-situ grown on stainless steel mesh by heat treatment and electrodeposition technology. Benefiting from the unique three-dimensional structure of carbon nanotubes, it can expose more active sites, and the prepared catalyst has excellent OER performance, with an overpotential of only 374 mV at a current density of 100 mA cm?2. In addition, the zinc-air battery assembled with NiO-CNT/SS material has an open circuit voltage of 1.44 V and excellent cycle stability. It can cycle stably for 145 h without significant attenuation at a current density of 5 mA cm?2.
[1] | Gao, J., Pan, D., Chen, K., Liu, Y., Chen, J. and Wen, Z. (2024) High‐Power‐Density Hybrid Acid/Alkali Zinc-Air Battery for High‐Efficiency Desalination. Advanced Energy Materials, 14, Article ID: 2400368. https://doi.org/10.1002/aenm.202400368 |
[2] | Timoshenko, J., Rettenmaier, C., Hursán, D., Rüscher, M., Ortega, E., Herzog, A., et al. (2024) Reversible Metal Cluster Formation on Nitrogen-Doped Carbon Controlling Electrocatalyst Particle Size with Subnanometer Accuracy. Nature Communications, 15, Article No. 6111. https://doi.org/10.1038/s41467-024-50379-w |
[3] | Zou, X., Lu, Q., Wu, J., Zhang, K., Tang, M., Wu, B., et al. (2024) Screening Spinel Oxide Supports for RuO2 to Boost Bifunctional Electrocatalysts for Advanced Zn-Air Batteries. Advanced Functional Materials, 34, Article ID: 2401134. https://doi.org/10.1002/adfm.202401134 |
[4] | Li, L., Fu, L., Wang, R., Sun, J., Li, X., Fu, C., et al. (2020) Cobalt, Manganese Zeolitic-Imidazolate-Framework-Derived Co3O4/Mn3O4/CNx Embedded in Carbon Nanofibers as an Efficient Bifunctional Electrocatalyst for Flexible Zn-Air Batteries. Electrochimica Acta, 344, Article ID: 136145. https://doi.org/10.1016/j.electacta.2020.136145 |
[5] | Liu, B., Yuan, B., Wang, C., You, S., Liu, J., Meng, X., et al. (2023) Highly-Dispersed NiFe Alloys In-Situ Anchored on Outer Surface of Co, N Co-Doped Carbon Nanotubes with Enhanced Stability for Oxygen Electrocatalysis. Journal of Colloid and Interface Science, 635, 208-220. https://doi.org/10.1016/j.jcis.2022.12.152 |
[6] | Zhong, X., Xiao, X., Li, Q., Zhang, M., Li, Z., Gao, L., et al. (2024) Understanding the Active Site in Chameleon-Like Bifunctional Catalyst for Practical Rechargeable Zinc-Air Batteries. Nature Communications, 15, Article No. 9616. https://doi.org/10.1038/s41467-024-54019-1 |
[7] | Chen, Z., Zou, Y., Chen, H., Zhang, K. and Hui, B. (2023) Bamboo‐Modulated Helical Carbon Nanotubes for Rechargeable Zn‐Air Battery. Small, 20, Article ID: 2307776. https://doi.org/10.1002/smll.202307776 |
[8] | Li, Z., Ji, S., Xu, C., Leng, L., Liu, H., Horton, J.H., et al. (2022) Engineering the Electronic Structure of Single‐Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc-Air Batteries. Advanced Materials, 35, Article ID: 2209644. https://doi.org/10.1002/adma.202209644 |
[9] | Yu, P., Wang, L., Sun, F., Xie, Y., Liu, X., Ma, J., et al. (2019) Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. Advanced Materials, 31, Article ID: 1901666. https://doi.org/10.1002/adma.201901666 |
[10] | Dai, J., Zhang, J., Karthick, R., Liang, M., Wei, Q., Chen, X., et al. (2022) Co/fe3o4 Nanoparticles Embedded in N-Doped Hierarchical Porous Carbon Derived from Zeolitic Imidazolate Frameworks as Efficient Oxygen Reduction Electrocatalysts for Zinc-Air Battery-Based Desalination. Journal of Materials Chemistry A, 10, 12213-12224. https://doi.org/10.1039/d2ta00736c |
[11] | Wang, X., Zhou, X., Li, C., Yao, H., Zhang, C., Zhou, J., et al. (2022) Asymmetric Co-N3P1 Trifunctional Catalyst with Tailored Electronic Structures Enabling Boosted Activities and Corrosion Resistance in an Uninterrupted Seawater Splitting System. Advanced Materials, 34, Article ID: 2204021. https://doi.org/10.1002/adma.202204021 |
[12] | Wang, A., Gao, S., Yan, J., Zhao, C., Yu, M. and Wang, W. (2023) Vacancy-Modified Bimetallic FeMoSx/CoNiPx Heterostructure Array for Efficient Seawater Splitting and Zn-Air Battery. Journal of Energy Chemistry, 81, 533-542. https://doi.org/10.1016/j.jechem.2023.02.029 |
[13] | Chang, J., Wang, G., Yang, Z., Li, B., Wang, Q., Kuliiev, R., et al. (2021) Dual‐Doping and Synergism toward High‐performance Seawater Electrolysis. Advanced Materials, 33, Article ID: 2101425. https://doi.org/10.1002/adma.202101425 |
[14] | Fan, Y., Wang, W., Chen, Y., Xu, Z., Cai, D., Xu, M., et al. (2024) Cobalt-Containing Zif-Derived Catalysts for Zn-Air Batteries. Materials Chemistry Frontiers, 8, 2394-2419. https://doi.org/10.1039/d4qm00169a |
[15] | Yang, M., Shu, X., Pan, W. and Zhang, J. (2021) Toward Flexible Zinc-Air Batteries with Self‐Supported Air Electrodes. Small, 17, Article ID: 2006773. https://doi.org/10.1002/smll.202006773 |
[16] | Kuang, J., Shen, Y., Zhang, Y., Yao, J., Du, J., Yang, S., et al. (2023) Synergistic Bimetallic Cocu‐Codecorated Carbon Nanosheet Arrays as Integrated Bifunctional Cathodes for High‐Performance Rechargeable/Flexible Zinc‐Air Batteries. Small, 19, Article ID: 2207413. https://doi.org/10.1002/smll.202207413 |
[17] | Wang, Z., Jian, J., Wang, X., Qiao, Y., Wang, M., Gao, S., et al. (2023) CoNi2S4@CoNi-LDH Heterojunction Grown on SSM as a Highly Efficient Trifunctional Catalyst for Water-Splitting and Zn-Air Batteries. Journal of Materials Chemistry C, 11, 16384-16389. https://doi.org/10.1039/d3tc03336h |