全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

文本分析驱动的旅游目的地形象感知及管理创新
Text Analysis-Driven Perception of Tourist Destination Image and Management Innovation

DOI: 10.12677/sd.2025.153067, PP. 20-24

Keywords: 文本分析,形象感知,管理创新
Text Analysis
, Image Perception, Management Innovation

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着大数据和人工智能应用的发展,网络文本分析已成为旅游目的地形象感知的重要工具。该文以文本分析为脉络,从研究理论基础、国内外研究进展、技术发展与应用、研究发现与讨论等方面系统阐述了旅游目的地形象感知的内涵与特征、形成机制,得出了旅游目的地形象感知可以通过文本分析方法中的高频词提取、情感分析、语义网络构建等方法进行深入分析,挖掘出游客对目的地的认知、情感、形象感知特点;国内外学者在旅游目的地形象感知研究方面已有诸多探索,但存在跨文化旅游目的地形象感知研究不足、分析工具不够多模式整合应用等问题,未来应进一步加强技术与理论融合、加强旅游目的地形象感知研究的跨学科协作,为旅游目的地形象的优化和管理创造的创新提供支撑。
With the development of big data and artificial intelligence applications, network text analysis has become an important tool for perceiving tourist destination images. This article takes text analysis as the main thread and systematically expounds on the connotation, characteristics, and formation mechanism of tourist destination image perception from aspects such as research theoretical basis, research progress at home and abroad, technology development and application, research findings and discussions. It is concluded that the perception of tourist destination images can be deeply analyzed through methods such as high-frequency word extraction, sentiment analysis, and semantic network construction in text analysis methods, so as to explore tourists’ cognitive, emotional, and image perception characteristics of the destination. Scholars at home and abroad have conducted many explorations in the research of tourist destination image perception. However, there are problems such as insufficient research on cross-cultural tourist destination image perception and insufficient multimodal integration and application of analysis tools. In the future, it is necessary to further strengthen the integration of technology and theory and interdisciplinary collaboration in the research of tourist destination image perception, so as to provide support for the optimization of tourist destination images and innovation in management.

References

[1]  杨莹, 马怡然. 景观社会视角下网红景点形象感知偏差形成机制[J]. 经济地理, 2024, 44(2): 219-227.
[2]  张维亚, 汤澍, 陈玲玲, 徐敏. 基于网络文本分析的文化遗产生态环境游客感知及其对遗产旅游形象影响研究——以南京明城墙为例[J]. 生态经济, 2024, 40(6): 135-140, 171.
[3]  柯山, 陈钦, 金博闻, 吕梁, 潘辉. 基于深度学习和UGC图片识别的森林公园旅游形象感知研究——以张家界国家森林公园为例[J]. 中南林业科技大学学报(社会科学版), 2022, 16(1): 107-116.
[4]  钟荣凤, 詹岚. 基于网络文本分析的民族村寨旅游体验——以半月里村为例[J]. 宁德师范学院学报(哲学社会科学版), 2024(2): 143-149.
[5]  代浩宇, 马国强, 汪胜兰, 黄银洲. 基于ChatGPT和ROST方法的敦煌旅游地形象感知分析与对比[J]. 干旱区资源与环境, 2024, 38(12): 151-159.
[6]  刘杰. 基于网络文本分析的冰雪旅游游客满意度研究——以长春为例[J]. 体育科技文献通报, 2024, 32(9): 144-147, 151.
[7]  Zhang, M., Di, Q. and Liu, Y. (2024) Perceived Differences in Coastal Tourism Image under Tourist Experience-IPA Analysis Based on UGC Data of 12 Coastal Cities. PLOS ONE, 19, e0299431.
https://doi.org/10.1371/journal.pone.0299431

[8]  Hu, T. and Geng, J. (2024) Research on the Perception of the Terrain Image of the Tourism Destination Based on Multimodal User-Generated Content Data. PeerJ Computer Science, 10, e1801.
https://doi.org/10.7717/peerj-cs.1801

[9]  Leung, R. and Handler, I. (2024) Unveiling Tourist Typology: Using Online Reviews and LDA to Understand Motivations for Visiting Kyoto’s Prominent Temples. International Journal of Tourism Cities.
https://doi.org/10.1108/ijtc-01-2024-0014

[10]  Beerli, A. and Martín, J.D. (2004) Factors Influencing Destination Image. Annals of Tourism Research, 31, 657-681.
https://doi.org/10.1016/j.annals.2004.01.010

[11]  方程, 张宇昊, 许丹莹, 陈慕竹. 长江文化的景观形象感知研究——以长江中下游若干滨江历史公园为考察对象[J]. 现代城市研究, 2024(3): 39-46.
[12]  刘超, 胡梦晴, 林文敏, 王晓荣, 李维, 曾克峰. 山岳型景区旅游形象感知研究: 基于2014-2016年黄山网络游记分析[J]. 山地学报, 2017, 35(4): 566-571.
[13]  王维胜, 周泱宏, 唐承财. 短视频内容特征对旅游目的地形象及游客行为意愿的影响研究——基于积极情绪理论[J/OL]. 地理与地理信息科学: 1-10.
http://kns.cnki.net/kcms/detail/13.1330.P.20241219.1632.006.html, 2025-02-06.
[14]  关阳, 张徐, 苏振. 基于Python数据可视化的国内外游客桂林旅游感知对比分析[J]. 资源开发与市场, 2021, 37(11): 1380-1387, 1408.
[15]  陈曦亮, 李钢, 徐锋, 于悦, 张千禧. 基于无人机航拍照片的西安城市形象感知研究[J]. 地理科学进展, 2021, 40(9): 1600-1612.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133