全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Hurst方法的脉动流化床床层稳定性分析
Stability Analysis of Pulsating Fluidized Bed Based on Hurst Method

DOI: 10.12677/ijfd.2025.131003, PP. 25-36

Keywords: 脉动流化床,Hurst分析,稳定性,压力信号,脉动频率
Pulsating Fluidized Bed
, Hurst Analysis, Stability, Pressure Signal, Pulsation Frequency

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hurst方法可用于揭示流型转变,区分部分不同类型颗粒的流动结构,检测流化床内气体分布的不均匀性。本文基于Hurst方法对脉动流化床床层稳定性进行分析。通过改变细颗粒含量、流化气速和脉动能量,对床层压力信号进行监测,来实现对脉动流化床床层稳定性进行研究。研究结果表明:适当添加细颗粒可提高床层稳定性;增加流化气速,在一定范围内,气泡小,流化均匀稳定,超过一定范围,干扰因素增加,床层波动剧烈;引入脉动能量,可以削弱气泡扰动、降低气泡频率,但超过一定范围削弱能力会减弱。
The Hurst method can be used to reveal flow pattern transitions, distinguish the flow structures of different types of particles, and detect the non-uniformity of gas distribution in fluidized beds. This article analyzes the stability of a pulsating fluidized bed based on the Hurst method by changing the fine particle content, gas velocity, and pulsating energy, the bed pressure signal was monitored to study the stability of the pulsating fluidized bed. The research results indicate that adding fine particles appropriately can improve the stability of the bed; Increasing the fluidization gas velocity, within a certain range, the bubbles are small, and the fluidization is uniform and stable. Beyond a certain range, the interference factors increase, and the bed fluctuates violently; Introducing pulsating energy can weaken bubble disturbance and reduce bubble frequency, but beyond a certain range, the weakening ability will weaken.

References

[1]  Chalavadi, G., Singh, R.K., Singh, R., Sharma, M., Rath, R.K. and Mukherjee, A.K. (2018) Development of Dry Beneficiation Flow Sheet for Fine Coking Coal. International Journal of Coal Preparation and Utilization, 41, 67-80.
https://doi.org/10.1080/19392699.2018.1448799

[2]  Zhao, Y., Li, G., Luo, Z., Zhang, B., Dong, L., Liang, C., et al. (2016) Industrial Application of a Modularized Dry-Coal-Beneficiation Technique Based on a Novel Air Dense Medium Fluidized Bed. International Journal of Coal Preparation and Utilization, 37, 44-57.
https://doi.org/10.1080/19392699.2015.1125344

[3]  Macpherson, S.A., Iveson, S.M. and Galvin, K.P. (2011) Density-Bsed Separation in a Vibrated Reflux Classifier with an Air-Sand Dense-Medium: Tracer Studies with Simultaneous Underflow and Overflow Removal. Minerals Engineering, 24, 1046-1052.
https://doi.org/10.1016/j.mineng.2011.05.002

[4]  Zhou, E., Zhang, Y., Zhao, Y., Luo, Z., He, J. and Duan, C. (2018) Characteristic Gas Velocity and Fluidization Quality Evaluation of Vibrated Dense Medium Fluidized Bed for Fine Coal Separation. Advanced Powder Technology, 29, 985-995.
https://doi.org/10.1016/j.apt.2018.01.017

[5]  Azimi, E., Karimipour, S., Rahman, M., Szymanski, J. and Gupta, R. (2013) Evaluation of the Performance of Air Dense Medium Fluidized Bed (ADMFB) for Low-Ash Coal Beneficiation. Part 2: Characteristics of the Beneficiated Coal. Energy & Fuels, 27, 5607-5616.
https://doi.org/10.1021/ef400457y

[6]  Gao, Z., Duan, C., Zhao, Y. and Mao, P. (2022) Apparent Viscosity of Mixed Particle System in Pulsed Gas-Solid Separation Fluidized Bed. Particuology, 71, 41-46.
https://doi.org/10.1016/j.partic.2022.01.014

[7]  Oshitani, J., Ohnishi, M., Yoshida, M., Franks, G.V., Kubo, Y. and Nakatsukasa, S. (2013) Dry Separation of Particulate Iron Ore Using Density-Segregation in a Gas-Solid Fluidized Bed. Advanced Powder Technology, 24, 554-559.
https://doi.org/10.1016/j.apt.2012.11.005

[8]  Duan, C., Zhou, C., Dong, L., Zhao, Y. and Liu, Q. (2018) A Novel Dry Beneficiation Technology for Pyrite Recovery from High Sulfur Gangue. Journal of Cleaner Production, 172, 2475-2484.
https://doi.org/10.1016/j.jclepro.2017.11.162

[9]  Fotovat, F. and Chaouki, J. (2015) Characterization of the Upward Motion of an Object Immersed in a Bubbling Fluidized Bed of Fine Particles. Chemical Engineering Journal, 280, 26-35.
https://doi.org/10.1016/j.cej.2015.05.130

[10]  Liu, X., Fan, X., Zhao, Y., Duan, C. and Zhou, C. (2022) Particles Movement Behavior and Apparent Density in Gas-Solid Fluidized Bed as Determined by an Electronic Dynamometer and Electrical Capacitance Tomography. Chemical Engineering Journal, 429, Article ID: 132463.
https://doi.org/10.1016/j.cej.2021.132463

[11]  Fotovat, F., Chaouki, J. and Bergthorson, J. (2014) Distribution of Large Biomass Particles in a Sand‐Biomass Fluidized Bed: Experiments and Modeling. AIChE Journal, 60, 869-880.
https://doi.org/10.1002/aic.14337

[12]  董良. 浓相脉动流化床流化与分选机理研究[D]: [博士学位论文]. 徐州: 中国矿业大学, 2015.
[13]  Bai, B., Gheorghiu, S., van Ommen, J.R., Nijenhuis, J. and Coppens, M. (2005) Characterization of the Void Size Distribution in Fluidized Beds Using Statistics of Pressure Fluctuations. Powder Technology, 160, 81-92.
https://doi.org/10.1016/j.powtec.2005.08.031

[14]  Si, C., Zhou, J. and Guo, Q. (2011) Characterization of Pressure Fluctuation Signals in an Acoustic Bubbling Fluidized Bed. Journal of the Taiwan Institute of Chemical Engineers, 42, 929-936.
https://doi.org/10.1016/j.jtice.2011.05.001

[15]  Feng, Y.Q. and Yu, A.B. (2008) An Analysis of the Chaotic Motion of Particles of Different Sizes in a Gas Fluidized Bed. Particuology, 6, 549-556.
https://doi.org/10.1016/j.partic.2008.07.011

[16]  Felipe, C.A.S. and Rocha, S.C.S. (2007) Prediction of Minimum Fluidization Velocity of Gas-Solid Fluidized Beds by Pressure Fluctuation Measurements—Analysis of the Standard Deviation Methodology. Powder Technology, 174, 104-113.
https://doi.org/10.1016/j.powtec.2007.01.015

[17]  Shou, M.C. and Leu, L.P. (2005) Energy of Power Spectral Density Function and Wavelet Analysis of Absolute Pressure Fluctuation Measurements in Fluidized Beds. Chemical Engineering Research and Design, 83, 478-491.
https://doi.org/10.1205/cherd.04123

[18]  Ellis, N., Briens, L.A., Grace, J.R., Bi, H.T. and Lim, C.J. (2003) Characterization of Dynamic Behaviour in Gas-Solid Turbulent Fluidized Bed Using Chaos and Wavelet Analyses. Chemical Engineering Journal, 96, 105-116.
https://doi.org/10.1016/j.cej.2003.08.017

[19]  Sasic, S., Leckner, B. and Johnsson, F. (2007) Characterization of Fluid Dynamics of Fluidized Beds by Analysis of Pressure Fluctuations. Progress in Energy and Combustion Science, 33, 453-496.
https://doi.org/10.1016/j.pecs.2007.03.001

[20]  Sánchez-Prieto, J., Soria-Verdugo, A., Gómez-Hernández, J., Briongos, J.V. and Santana, D. (2015) Maldistribution Detection in Bubbling Fluidized Beds. Chemical Engineering Journal, 270, 272-281.
https://doi.org/10.1016/j.cej.2015.02.046

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133