全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prevailing Surface-Controlled Charge Storage Mechanism in Iron Oxcide with Glycine Doping for Supercapacitors

DOI: 10.4236/anp.2025.142003, PP. 37-54

Keywords: Iron Oxcide, PVP and Glycine, Sol-Gel Method, Surface Controlled Mechanism, Supercapacitor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Supercapacitors as futuristic types of energy storage devices provide numerous benefits, including high power density, stability, environmentally friendliness, and fast charging and discharging speed. The primary objective of this research is to optimize the charge storage mechanism of Iron Oxcide (Fe3O4) nanomaterials with different PVP and glycine concentrations prepared by the sol-gel method. PVP and glycine doping variations the structural characteristics of materials, including modifications in lattice parameters, crystallite size. PVP doping enhances the structural stability and crystallite size of Fe3O4, resulting in bigger nanoparticles with a more continuous shape. In contrast, glycine doping dramatically alters the XRD pattern, indicating improved crystallinity, and significantly boosts electrochemical performance. SEM images show the spherical like shape of the pristine and doped Fe3O4 nanomaterials. Electrochemical characteristics demonstrate how PYP and glycine doping improve the Fe3O4 nanomaterial’s effectiveness as an electrode material for supercapacitors. When glycine is doped in Fe3O4, the specific capacitance rises to 300 Fg1, while undoped Fe3O4 has 94 Fg1 at a weep rate of 5 mVs1. Theoretical analyses by employing Dunn’s model indicate that surface-controlled mechanisms majorly contributed to the charge storage and portion is as high as 75 % at a sweep rate of 40 mVs1 for glycine doping.

References

[1]  Chen, Y., Yao, Y., Zhao, W., Wang, L., Li, H., Zhang, J., et al. (2023) Precise Solid-Phase Synthesis of CoFe@FeOx Nanoparticles for Efficient Polysulfide Regulation in Lithium/Sodium-Sulfur Batteries. Nature Communications, 14, Article No. 7487.
https://doi.org/10.1038/s41467-023-42941-9
[2]  Yan, J., Wang, Q., Wei, T. and Fan, Z. (2013) Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 4, Article ID: 1300816.
https://doi.org/10.1002/aenm.201300816
[3]  Samuel, E., Joshi, B., Jo, H.S., Kim, Y.I., An, S., Swihart, M.T., et al. (2017) Carbon Nanofibers Decorated with Feo Nanoparticles as a Flexible Electrode Material for Symmetric Supercapacitors. Chemical Engineering Journal, 328, 776-784.
https://doi.org/10.1016/j.cej.2017.07.063
[4]  Zhao, B., Zheng, Y., Ye, F., Deng, X., Xu, X., Liu, M., et al. (2015) Multifunctional Iron Oxide Nanoflake/graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Applied Materials & Interfaces, 7, 14446-14455.
https://doi.org/10.1021/acsami.5b03477
[5]  Liang, R., Du, Y., Xiao, P., Cheng, J., Yuan, S., Chen, Y., et al. (2021) Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials, 11, Article 1248.
https://doi.org/10.3390/nano11051248
[6]  Ahmad, F., Shahzad, A., Danish, M., Fatima, M., Adnan, M., Atiq, S., et al. (2024) Recent Developments in Transition Metal Oxide-Based Electrode Composites for Supercapacitor Applications. Journal of Energy Storage, 81, Article ID: 110430.
https://doi.org/10.1016/j.est.2024.110430
[7]  Zhu, X. (2022) Recent Advances of Transition Metal Oxides and Chalcogenides in Pseudo-Capacitors and Hybrid Capacitors: A Review of Structures, Synthetic Strategies, and Mechanism Studies. Journal of Energy Storage, 49, Article ID: 104148.
https://doi.org/10.1016/j.est.2022.104148
[8]  Zhan, C., Yao, Z., Lu, J., Ma, L., Maroni, V.A., Li, L., et al. (2017) Enabling the High Capacity of Lithium-Rich Anti-Fluorite Lithium Iron Oxide by Simultaneous Anionic and Cationic Redox. Nature Energy, 2, 963-971.
https://doi.org/10.1038/s41560-017-0043-6
[9]  Kumar, R., Nekouei, R.K. and Sahajwalla, V. (2025) In-situ Carbon-Coated Iron Oxide (ISCC-Fe3O4) as an Efficient Electrode Material for Supercapacitor Applications. Ceramics International.
https://doi.org/10.1016/j.ceramint.2025.01.071
[10]  Song, H., Wu, M., Tang, X., Liang, J., Zhang, Y., Xie, Y., et al. (2025) Synthesis of Fe3O4/FeS2 Composites via MOF-Templated Sulfurization for High-Performance Hybrid Supercapacitors. Journal of Alloys and Compounds, 1010, Article ID: 177658.
https://doi.org/10.1016/j.jallcom.2024.177658
[11]  Ali, H.G., Khan, K., Hanif, M.B., Khan, M.Z., Hussain, I., Javed, M.S., et al. (2023) Advancements in Two-Dimensional Materials as Anodes for Lithium-Ion Batteries: Exploring Composition-Structure-Property Relationships Emerging Trends, and Future Perspective. Journal of Energy Storage, 73, Article ID: 108980.
https://doi.org/10.1016/j.est.2023.108980
[12]  Arbizzani, C., Mastragostino, M. and Meneghello, L. (1996) Polymer-Based Redox Supercapacitors: A Comparative Study. Electrochimica Acta, 41, 21-26.
https://doi.org/10.1016/0013-4686(95)00289-q
[13]  Snook, G.A., Kao, P. and Best, A.S. (2011) Conducting-Polymer-Based Supercapacitor Devices and Electrodes. Journal of Power Sources, 196, 1-12.
https://doi.org/10.1016/j.jpowsour.2010.06.084
[14]  Zhao, Q., Xia, Z., Qian, T., Rong, X., Zhang, M., Dong, Y., et al. (2021) PVP-Assisted Synthesis of Ultrafine Transition Metal Oxides Encapsulated in Nitrogen-Doped Carbon Nanofibers as Robust and Flexible Anodes for Sodium-Ion Batteries. Carbon, 174, 325-334.
https://doi.org/10.1016/j.carbon.2020.12.016
[15]  Zhang, J., Tang, L., Zhang, Y., Li, X., Xu, Q., Liu, H., et al. (2021) Polyvinylpyrrolidone Assisted Synthesized Ultra-Small Na4Fe3(PO4)2(P2O7) Particles Embedded in 1D Carbon Nanoribbons with Enhanced Room and Low Temperature Sodium Storage Performance. Journal of Power Sources, 498, Article ID: 229907.
https://doi.org/10.1016/j.jpowsour.2021.229907
[16]  Durga, I.K., Rao, S.S., Kalla, R.M.N., Ahn, J. and Kim, H. (2020) Facile Synthesis of FeS2/PVP Composite as High-Performance Electrodes for Supercapacitors. Journal of Energy Storage, 28, Article ID: 101216.
https://doi.org/10.1016/j.est.2020.101216
[17]  Choi, I., Kwak, D., Han, S., Park, J., Park, H., Ma, K., et al. (2017) Doped Porous Carbon Nanostructures as Non-Precious Metal Catalysts Prepared by Amino Acid Glycine for Oxygen Reduction Reaction. Applied Catalysis B: Environmental, 211, 235-244.
https://doi.org/10.1016/j.apcatb.2017.04.039
[18]  Asadi, F., Ahangari, M., Mostafaei, J., Kalantari, N., Delibas, N., Asghari, E., et al. (2024) Manganese Doped La0.8Ba0.2FeO3 Perovskite Oxide as an Efficient Electrode Material for Supercapacitor. Journal of Alloys and Compounds, 1004, Article ID: 175801.
https://doi.org/10.1016/j.jallcom.2024.175801
[19]  Eeu, Y.C., Lim, H.N., Lim, Y.S., Zakarya, S.A. and Huang, N.M. (2013) Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material. Journal of Nanomaterials, 2013, Article ID: 653890.
https://doi.org/10.1155/2013/653890
[20]  Nongthombam, S., Aruna Devi, N., Sinha, S., Ishwarchand Singh, W. and Swain, B.P. (2023) Analysis of Structural Defects with the Chemical Composition of rGO/GaN Nanocomposites Using Raman Spectroscopy. Materials Today: Proceedings, 74, 744-749.
https://doi.org/10.1016/j.matpr.2022.10.302
[21]  Bhattacharya, G., Sas, S., Wadhwa, S., Mathur, A., McLaughlin, J. and Roy, S.S. (2017) Aloe Vera Assisted Facile Green Synthesis of Reduced Graphene Oxide for Electrochemical and Dye Removal Applications. RSC Advances, 7, 26680-26688.
https://doi.org/10.1039/c7ra02828h
[22]  Chanu, S.N., Sinha, S., Devi, P.S., Devi, N.A., Sathe, V., Swain, B.S., et al. (2022) Optical, Electrochemical and Corrosion Resistance Properties of Iron Oxide/Reduced Graphene Oxide/Polyvinylpyrrolidone Nanocomposite as Supercapacitor Electrode Material. Bulletin of Materials Science, 45, Article No. 122.
https://doi.org/10.1007/s12034-022-02704-6
[23]  EL-Ghoul, Y., Alminderej, F.M., Alsubaie, F.M., Alrasheed, R. and Almousa, N.H. (2021) Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers, 13, Article 4327.
https://doi.org/10.3390/polym13244327
[24]  Islam, M.R., Afroj, S., Novoselov, K.S. and Karim, N. (2022) Smart Electronic Textile‐based Wearable Supercapacitors. Advanced Science, 9, Article ID: 2203856.
https://doi.org/10.1002/advs.202203856
[25]  Ragab, H.M., Diab, N.S., Aleid, G.M., Alghamdi, A.M., Al-Sagheer, L.A.M. and Farea, M.O. (2024) Enhancement of Structural, Optical, and Electrical Properties of Hydroxypropyl Methylcellulose/Polyvinyl Alcohol Nanocomposites by Nickel Ferrite Nanoparticles for Optoelectronic Applications. Journal of Inorganic and Organometallic Polymers and Materials, 35, 1152-1164.
https://doi.org/10.1007/s10904-024-03337-4
[26]  Chai, S., Zhang, W., Yang, J., Zhang, L., Theint, M.M., Zhang, X., et al. (2023) Sustainability Applications of Rare Earths from Metallurgy, Magnetism, Catalysis, Luminescence to Future Electrochemical Pseudocapacitance Energy Storage. RSC Sustainability, 1, 38-71.
https://doi.org/10.1039/d2su00054g
[27]  Hsueh, P. (2010) New Delhi Metallo-Β-Lactamase-1 (NDM-1): An Emerging Threat among Enterobacteriaceae. Journal of the Formosan Medical Association, 109, 685-687.
https://doi.org/10.1016/s0929-6646(10)60111-8
[28]  Abbas, F., Jan, T., Iqbal, J., Ahmad, I., Naqvi, M.S.H. and Malik, M. (2015) Facile Synthesis of Ferromagnetic Ni Doped CeO2 Nanoparticles with Enhanced Anticancer Activity. Applied Surface Science, 357, 931-936.
https://doi.org/10.1016/j.apsusc.2015.08.229
[29]  Fatimah, S., Ragadhita, R., Husaeni, D.F.A. and Nandiyanto, A.B.D. (2021) How to Calculate Crystallite Size from X-Ray Diffraction (XRD) Using Scherrer Method. ASEAN Journal of Science and Engineering, 2, 65-76.
https://doi.org/10.17509/ajse.v2i1.37647
[30]  Aisida, S.O., Akpa, P.A., Ahmad, I., Maaza, M. and Ezema, F.I. (2019) Influence of PVA, PVP and PEG Doping on the Optical, Structural, Morphological and Magnetic Properties of Zinc Ferrite Nanoparticles Produced by Thermal Method. Physica B: Condensed Matter, 571, 130-136.
https://doi.org/10.1016/j.physb.2019.07.001
[31]  Ahmad, Z. (2023) Surface Morphological Characterization of Co1-xCexFe2O4 Spinal Ferrites Synthesized by Solide-State Reaction Method. Advances in Nanoparticles, 12, 139-146.
https://doi.org/10.4236/anp.2023.123011
[32]  Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., et al. (2018) Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10, Article 57.
https://doi.org/10.3390/pharmaceutics10020057
[33]  Seo, K., Sinha, K., Novitskaya, E. and Graeve, O.A. (2018) Polyvinylpyrrolidone (PVP) Effects on Iron Oxide Nanoparticle Formation. Materials Letters, 215, 203-206.
https://doi.org/10.1016/j.matlet.2017.12.107
[34]  Baganizi, D., Nyairo, E., Duncan, S., Singh, S. and Dennis, V. (2017) Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for Improved Stability and Therapeutic Efficacy. Nanomaterials, 7, Article 165.
https://doi.org/10.3390/nano7070165
[35]  Latha, A.A., Anbuchezhiyan, M., Kanakam, C.C. and Selvarani, K. (2017) Synthesis and Characterization of γ-Glycine—A Nonlinear Optical Single Crystal for Optoelectronic and Photonic Applications. Materials Science-Poland, 35, 140-150.
https://doi.org/10.1515/msp-2017-0031
[36]  Lesiak, B., Rangam, N., Jiricek, P., Gordeev, I., Tóth, J., Kövér, L., et al. (2019) Surface Study of Fe3O4 Nanoparticles Functionalized with Biocompatible Adsorbed Molecules. Frontiers in Chemistry, 7, Article 642.
https://doi.org/10.3389/fchem.2019.00642
[37]  Zeng, D., Liu, Z., Bai, S. and Wang, J. (2019) Influence of Sealing Treatment on the Corrosion Resistance of PEO Coated Al-Zn-Mg-Cu Alloy in Various Environments. Coatings, 9, Article 867.
https://doi.org/10.3390/coatings9120867
[38]  Cai, H., An, X., Cui, J., Li, J., Wen, S., Li, K., et al. (2013) Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications. ACS Applied Materials & Interfaces, 5, 1722-1731.
https://doi.org/10.1021/am302883m
[39]  Cai, J., Zhou, Q., Gong, X., Liu, B., Zhang, Y., Dai, Y., et al. (2020) Metal-Free Amino Acid Glycine-Derived Nitrogen-Doped Carbon Aerogel with Superhigh Surface Area for Highly Efficient Zn-Air Batteries. Carbon, 167, 75-84.
https://doi.org/10.1016/j.carbon.2020.06.002
[40]  Xing, L., Huang, K., Cao, S. and Pang, H. (2018) Chestnut Shell-Like Li4Ti5O12 Hollow Spheres for High-Performance Aqueous Asymmetric Supercapacitors. Chemical Engineering Journal, 332, 253-259.
https://doi.org/10.1016/j.cej.2017.09.084
[41]  O’Neill, L., Johnston, C. and Grant, P.S. (2015) Enhancing the Supercapacitor Behaviour of Novel Fe3O4/FeOOH Nanowire Hybrid Electrodes in Aqueous Electrolytes. Journal of Power Sources, 274, 907-915.
https://doi.org/10.1016/j.jpowsour.2014.09.151
[42]  Liu, M., Yu, Y., Liu, B., Liu, L., Lv, H. and Chen, A. (2018) PVP-Assisted Synthesis of Nitrogen-Doped Hollow Carbon Spheres for Supercapacitors. Journal of Alloys and Compounds, 768, 42-48.
https://doi.org/10.1016/j.jallcom.2018.07.234
[43]  AlFawaz, A., Ahmad, A., Ahmad, N. and Alharthi, F.A. (2022) Glycine Based Auto-Combustion Synthesis of ZnO Nanoparticles as Electrode Material for Supercapacitor. Physica Scripta, 97, Article ID: 030009.
https://doi.org/10.1088/1402-4896/ac52f8
[44]  Du, J., Chen, A., Zhang, Y., Zong, S., Wu, H. and Liu, L. (2020) PVP-Assisted Preparation of Nitrogen Doped Mesoporous Carbon Materials for Supercapacitors. Journal of Materials Science & Technology, 58, 197-204.
https://doi.org/10.1016/j.jmst.2020.02.088
[45]  Alqarni, A.N., Cevik, E., Gondal, M.A., Almessiere, M.A., Baykal, A., Bozkurt, A., et al. (2022) Synthesis and Design of Vanadium Intercalated Spinal Ferrite(Co0.5Ni0.5VxFe1.6−xO4) Electrodes for High Current Supercapacitor Applications. Journal of Energy Storage, 51, Article ID: 104357.
https://doi.org/10.1016/j.est.2022.104357
[46]  Peng, C., Zhang, S., Jewell, D. and Chen, G.Z. (2008) Carbon Nanotube and Conducting Polymer Composites for Supercapacitors. Progress in Natural Science, 18, 777-788.
https://doi.org/10.1016/j.pnsc.2008.03.002
[47]  Mathis, T.S., Kurra, N., Wang, X., Pinto, D., Simon, P. and Gogotsi, Y. (2019) Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Advanced Energy Materials, 9, Article ID: 1902007.
https://doi.org/10.1002/aenm.201902007
[48]  Kurra, N., Alhabeb, M., Maleski, K., Wang, C., Alshareef, H.N. and Gogotsi, Y. (2018) Bistacked Titanium Carbide (MXene) Anodes for Hybrid Sodium-Ion Capacitors. ACS Energy Letters, 3, 2094-2100.
https://doi.org/10.1021/acsenergylett.8b01062
[49]  Wang, J., Polleux, J., Lim, J. and Dunn, B. (2007) Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. The Journal of Physical Chemistry C, 111, 14925-14931.
https://doi.org/10.1021/jp074464w
[50]  Sathiya, M., Prakash, A.S., Ramesha, K., Tarascon, J. and Shukla, A.K. (2011) V2O5-Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage. Journal of the American Chemical Society, 133, 16291-16299.
https://doi.org/10.1021/ja207285b
[51]  Iqbal, M.Z., Siddique, S., Shaheen, M., Alam, S. and Alzaid, M. (2022) Role of Ag and Cu as an Interfacial Layer on the Electrochemical Performance of Ni/Ag/Co3(PO4)2 and Ni/Cu/Co3(PO4)2 Electrodes for Hybrid Energy Storage Devices. Ceramics International, 48, 15686-15694.
https://doi.org/10.1016/j.ceramint.2022.02.103
[52]  Iqbal, M.Z., Abbasi, U. and Alzaid, M. (2022) Cobalt Manganese Phosphate and Sulfide Electrode Materials for Potential Applications of Battery-Supercapacitor Hybrid Devices. Journal of Energy Storage, 50, Article ID: 104632.
https://doi.org/10.1016/j.est.2022.104632
[53]  Noori, A., El-Kady, M.F., Rahmanifar, M.S., Kaner, R.B. and Mousavi, M.F. (2019) Towards Establishing Standard Performance Metrics for Batteries, Supercapacitors and Beyond. Chemical Society Reviews, 48, 1272-1341.
https://doi.org/10.1039/c8cs00581h

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133