Background: As many novel intrauterine diagnostic techniques for life-threatening conditions advance, the efforts of maternal-fetal medicine (MFM) physicians to expand therapeutic boundaries should never be underestimated. This fact can be noticed in the rapid growth and revolutionary achievements in intrauterine fetal therapy (IUFT). Objectives: This study aims to gather the current available data about the intrauterine fetal therapy (IUFT), as a new rapidly advancing field of medicine, from a general perspective rather than diving deep into its complex information. Methods: It is a comprehensive literature review article done at the Batterjee Medical College, Jeddah, Saudi Arabia. By using the keywords (mentioned below), a cross-search of seven different medical databases (AMED-Allied and Complementary Medicine Database, BIOSIS Previews on Web of Knowledge, Cochrane Library, Embase, and the Medline on Web of Knowledge, OvidSP, and PubMed) was conducted to examine the progresses in the field of intrauterine fetal therapy. Results: The IUFT includes intrauterine pharmacological treatment, minimally invasive fetal interventions, and open fetal surgeries. Each of these interventions is subsequently subdivided into different categories. The future aspects of IUFT focus on intrauterine stem cell transplantation and intrauterine gene therapy, among others. Conclusion: Prenatal diagnosis of congenital fetal anomalies necessitates early intrauterine intervention to manage the current problem and avoid further complications. Ethical standards and family counseling should always be considered, and a risk-benefit scale should be applied. Further exploration of this rapidly advancing field is crucial, and extensive clinical trials and studies are recommended.
References
[1]
Deprest, J.A., Flake, A.W., Gratacos, E., Ville, Y., Hecher, K., Nicolaides, K., etal. (2010) The Making of Fetal Surgery. PrenatalDiagnosis, 30, 653-667. https://doi.org/10.1002/pd.2571
[2]
Olutoye, O.O., Joyeux, L., King, A., Belfort, M.A., Lee, T.C. and Keswani, S.G. (2023) Minimally Invasive Fetal Surgery and the Next Frontier. NeoReviews, 24, e67-e83. https://doi.org/10.1542/neo.24-2-e67
[3]
Moldenhauer, J.S. and Adzick, N.S. (2017) Fetal Surgery for Myelomeningocele: After the Management of Myelomeningocele Study (MOMS). SeminarsinFetalandNeonatalMedicine, 22, 360-366. https://doi.org/10.1016/j.siny.2017.08.004
[4]
Ma, H., Liu, Z. and Ruan, J. (2023) Placental Chorioangioma and Pregnancy Outcome: A Ten-Year Retrospective Study in a Tertiary Referral Centre. BMCPregnancyandChildbirth, 23, Article No. 381. https://doi.org/10.1186/s12884-023-05719-x
[5]
Cortes, R.A. and Farmer, D.L. (2004) Recent Advances in Fetal Surgery. SeminarsinPerinatology, 28, 199-211. https://doi.org/10.1053/j.semperi.2004.03.006
[6]
Adzick, N.S., Thom, E.A., Spong, C.Y., Brock, J.W., Burrows, P.K., Johnson, M.P., etal. (2011) A Randomized Trial of Prenatal versus Postnatal Repair of Myelomeningocele. NewEnglandJournalofMedicine, 364, 993-1004. https://doi.org/10.1056/nejmoa1014379
[7]
Reddy, U.M., Davis, J.M., Ren, Z. and Greene, M.F. (2017) Opioid Use in Pregnancy, Neonatal Abstinence Syndrome, and Childhood Outcomes: Executive Summary of a Joint Workshop by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, American College of Obstetricians and Gynecologists, American Academy of Pediatrics, Society for Maternal-Fetal Medicine, Centers for Disease Control and Prevention, and the March of Dimes Foundation. Obstetrics&Gynecology, 130, 10-28. https://doi.org/10.1097/aog.0000000000002054
[8]
Evans, L.L. and Harrison, M.R. (2021) Modern Fetal Surgery—A Historical Review of the Happenings That Shaped Modern Fetal Surgery and Its Practices. TranslationalPediatrics, 10, 1401-1417. https://doi.org/10.21037/tp-20-114
[9]
Deprest, J., Toelen, J., Debyser, Z., Rodrigues, C., Devlieger, R., De Catte, L., et al. (2011) The Fetal Patient—Ethical Aspects of Fetal Therapy. Facts, Views and Vision in ObGyn, 3, 221-227.
Recker, F., Schremmer, T., Berg, C., Schäfer, V.S., Strizek, B. and Jimenez‐Cruz, J. (2024) Advancement of 3D Printing Technology for the Development of a Training Model in US‐Guided Vesicoamniotic Shunting for Early LUTO Therapy. ActaObstetriciaetGynecologicaScandinavica, 103, 1550-1557. https://doi.org/10.1111/aogs.14879
[12]
Senat, M., Deprest, J., Boulvain, M., Paupe, A., Winer, N. and Ville, Y. (2004) Endoscopic Laser Surgery versus Serial Amnioreduction for Severe Twin-to-Twin Transfusion Syndrome. NewEnglandJournalofMedicine, 351, 136-144. https://doi.org/10.1056/nejmoa032597
[13]
Williams, M.V., Davis, T., Parker, R.M. and Weiss, B.D. (2002) The Role of Health Literacy in Patient-Physician Communication. Family Medicine, 34, 383-389.
[14]
Phithakwatchara, N., Nawapun, K., Panchalee, T., Viboonchart, S., Mongkolchat, N. and Wataganara, T. (2017) Current Strategy of Fetal Therapy I: Principles of in-Utero Treatment, Pharmacologic Intervention, Stem Cell Transplantation and Gene Therapy. JournalofFetalMedicine, 4, 131-138. https://doi.org/10.1007/s40556-017-0129-z
[15]
Ralston, S.J. and Leuthner, S.R. (2011) Maternal-Fetal Intervention and Fetal Care Centers. Pediatrics, 128, e473-e478. https://doi.org/10.1542/peds.2011-1570
[16]
Fabietti, I., Vassallo, C., De Rose, D.U., Rapisarda, A., Romiti, A., Viggiano, M., etal. (2022) Intrafetal Laser Therapy Is a Feasible Treatment for Different Fetal Conditions: A Systematic Review. FetalDiagnosisandTherapy, 49, 506-517. https://doi.org/10.1159/000528485
[17]
Strasburger, J.F., Eckstein, G., Butler, M., Noffke, P. and Wacker‐Gussmann, A. (2022) Fetal Arrhythmia Diagnosis and Pharmacologic Management. TheJournalofClinicalPharmacology, 62, S53-S66. https://doi.org/10.1002/jcph.2129
[18]
van de Velde, M. and De Buck, F. (2012) Fetal and Maternal Analgesia/Anesthesia for Fetal Procedures. FetalDiagnosisandTherapy, 31, 201-209. https://doi.org/10.1159/000338146
[19]
Graves, C.E., Harrison, M.R. and Padilla, B.E. (2017) Minimally Invasive Fetal Surgery. ClinicsinPerinatology, 44, 729-751. https://doi.org/10.1016/j.clp.2017.08.001
[20]
Abdelghaffar Helal, A. (2019) Principles of Fetal Surgery. In: Shehata, S., Ed., PediatricSurgery, FlowchartsandClinicalAlgorithms, IntechOpen. https://doi.org/10.5772/intechopen.85883
[21]
Ethun, C.G., Zamora, I.J., Roth, D.R., Kale, A., Cisek, L., Belfort, M.A., etal. (2013) Outcomes of Fetuses with Lower Urinary Tract Obstruction Treated with Vesicoamniotic Shunt: A Single-Institution Experience. JournalofPediatricSurgery, 48, 956-962. https://doi.org/10.1016/j.jpedsurg.2013.02.011
Morris, R.K., Khan, K.S. and Kilby, M.D. (2007) Vesicoamniotic Shunting for Fetal Lower Urinary Tract Obstruction: An Overview. ArchivesofDiseaseinChildhood-FetalandNeonatalEdition, 92, F166-F168. https://doi.org/10.1136/adc.2006.099820
[25]
Kirby, E. and Keijzer, R. (2020) Congenital Diaphragmatic Hernia: Current Management Strategies from Antenatal Diagnosis to Long-Term Follow-up. PediatricSurgeryInternational, 36, 415-429. https://doi.org/10.1007/s00383-020-04625-z
[26]
Chatterjee, D., Arendt, K.W., Moldenhauer, J.S., Olutoye, O.A., Parikh, J.M., Tran, K.M., etal. (2020) Anesthesia for Maternal-Fetal Interventions: A Consensus Statement from the American Society of Anesthesiologists Committees on Obstetric and Pediatric Anesthesiology and the North American Fetal Therapy Network. Anesthesia&Analgesia, 132, 1164-1173. https://doi.org/10.1213/ane.0000000000005177
[27]
Maselli, K.M. and Badillo, A. (2016) Advances in Fetal Surgery. AnnalsofTranslationalMedicine, 4, 394-394. https://doi.org/10.21037/atm.2016.10.34
[28]
Sacco, A., Ushakov, F., Thompson, D., Peebles, D., Pandya, P., De Coppi, P., etal. (2019) Fetal Surgery for Open Spina Bifida. TheObstetrician&Gynaecologist, 21, 271-282. https://doi.org/10.1111/tog.12603
[29]
Marwan, A. and Crombleholme, T.M. (2006) The EXIT Procedure: Principles, Pitfalls, and Progress. SeminarsinPediatricSurgery, 15, 107-115. https://doi.org/10.1053/j.sempedsurg.2006.02.008
Winkler, S.M., Harrison, M.R. and Messersmith, P.B. (2019) Biomaterials in Fetal Surgery. BiomaterialsScience, 7, 3092-3109. https://doi.org/10.1039/c9bm00177h
[32]
Xiao, S., Zhang, J., Zhu, Y., Zhang, Z., Cao, H., Xie, M., etal. (2023) Application and Progress of Artificial Intelligence in Fetal Ultrasound. JournalofClinicalMedicine, 12, Article 3298. https://doi.org/10.3390/jcm12093298
[33]
Ishii, T. (2014) Fetal Stem Cell Transplantation: Past, Present, and Future. WorldJournalofStemCells, 6, 404-420. https://doi.org/10.4252/wjsc.v6.i4.404
[34]
Sagar, R., Götherström, C., David, A.L. and Westgren, M. (2019) Fetal Stem Cell Transplantation and Gene Therapy. BestPractice&ResearchClinicalObstetrics&Gynaecology, 58, 142-153. https://doi.org/10.1016/j.bpobgyn.2019.02.007
[35]
Touraine, J.L., Raudrant, D., Royo, C., Rebaud, A., Roncarolo, M.G., Souillet, G., etal. (1989) In-Utero Transplantation of Stem Cells in Bare Lymphocyte Syndrome. TheLancet, 333, 1382. https://doi.org/10.1016/s0140-6736(89)92819-5
[36]
Buckley, R.H. (2010) Transplantation of Hematopoietic Stem Cells in Human Severe Combined Immunodeficiency: Longterm Outcomes. ImmunologicResearch, 49, 25-43. https://doi.org/10.1007/s12026-010-8191-9
[37]
Westgren, M., Ringdén, O., Bartmann, P., Bui, T., Lindton, B., Mattsson, J., etal. (2002) Prenatal T-Cell Reconstitution after in utero Transplantation with Fetal Liver Cells in a Patient with X-Linked Severe Combined Immunodeficiency. AmericanJournalofObstetricsandGynecology, 187, 475-482. https://doi.org/10.1067/mob.2002.123602
[38]
Chan, J.K.Y., Gil-Farina, I., Johana, N., Rosales, C., Tan, Y.W., Ceiler, J., etal. (2018) Therapeutic Expression of Human Clotting Factors IX and × Following Adeno‐Associated Viral Vector‐Mediated Intrauterine Gene Transfer in Early‐Gestation Fetal Macaques. TheFASEBJournal, 33, 3954-3967. https://doi.org/10.1096/fj.201801391r
[39]
Le Blanc, K., Götherström, C., Ringdén, O., Hassan, M., McMahon, R., Horwitz, E., etal. (2005) Fetal Mesenchymal Stem-Cell Engraftment in Bone after in utero Transplantation in a Patient with Severe Osteogenesis Imperfecta. Transplantation, 79, 1607-1614. https://doi.org/10.1097/01.tp.0000159029.48678.93
[40]
de Villaverde Cortabarria, A.S., Makhoul, L., Strouboulis, J., Lombardi, G., Oteng-Ntim, E. and Shangaris, P. (2021) In utero Therapy for the Treatment of Sickle Cell Disease: Taking Advantage of the Fetal Immune System. FrontiersinCellandDevelopmentalBiology, 8, Article 624477. https://doi.org/10.3389/fcell.2020.624477
[41]
Sagar, R.L., Walther‐Jallow, L., Götherström, C., Westgren, M. and David, A.L. (2023) Maternal and Fetal Safety Outcomes after in utero Stem Cell Injection: A Systematic Review. PrenatalDiagnosis, 43, 1622-1637. https://doi.org/10.1002/pd.6459
[42]
Sparks, T.N. (2021) The Current State and Future of Fetal Therapies. ClinicalObstetrics&Gynecology, 64, 926-932. https://doi.org/10.1097/grf.0000000000000651
[43]
Petrovski, S., Aggarwal, V., Giordano, J.L., Stosic, M., Wou, K., Bier, L., etal. (2019) Whole-Exome Sequencing in the Evaluation of Fetal Structural Anomalies: A Prospective Cohort Study. TheLancet, 393, 758-767. https://doi.org/10.1016/s0140-6736(18)32042-7
[44]
David, A.L. and Peebles, D. (2008) Gene Therapy for the Fetus: Is There a Future? BestPractice&ResearchClinicalObstetrics&Gynaecology, 22, 203-218. https://doi.org/10.1016/j.bpobgyn.2007.08.008
[45]
David, A.L. and Waddington, S.N. (2012) Candidate Diseases for Prenatal Gene Therapy. In: Coutelle, C. and Waddington, S., Eds., PrenatalGeneTherapy, Humana Press, 9-39. https://doi.org/10.1007/978-1-61779-873-3_2
[46]
Palanki, R., Peranteau, W.H. and Mitchell, M.J. (2021) Delivery Technologies for in utero Gene Therapy. AdvancedDrugDeliveryReviews, 169, 51-62. https://doi.org/10.1016/j.addr.2020.11.002
[47]
McClain, L.E. and Flake, A.W. (2016) In utero Stem Cell Transplantation and Gene Therapy: Recent Progress and the Potential for Clinical Application. BestPractice&ResearchClinicalObstetrics&Gynaecology, 31, 88-98. https://doi.org/10.1016/j.bpobgyn.2015.08.006
Shangaris, P., Loukogeorgakis, S.P., Subramaniam, S., Flouri, C., Jackson, L.H., Wang, W., etal. (2019) Publisher Correction: In utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. ScientificReports, 9, Article No. 20214. https://doi.org/10.1038/s41598-019-55754-y
[50]
Wong, S.P., Argyros, O. and Harbottle, R.P. (2012) Vector Systems for Prenatal Gene Therapy: Principles of Non-Viral Vector Design and Production. In: Coutelle, C. and Waddington, S., Eds., Prenatal Gene Therapy, Humana Press, 133-167. https://doi.org/10.1007/978-1-61779-873-3_7
[51]
Gillmore, J.D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M.L., etal. (2021) CRISPR-Cas9 in vivo Gene Editing for Transthyretin Amyloidosis. NewEnglandJournalofMedicine, 385, 493-502. https://doi.org/10.1056/nejmoa2107454
[52]
Seppen, J., van Til, N.P., van der Rijt, R., Hiralall, J.K., Kunne, C. and Elferink, R.P.J.O. (2005) Immune Response to Lentiviral Bilirubin UDP-Glucuronosyltransferase Gene Transfer in Fetal and Neonatal Rats. GeneTherapy, 13, 672-677. https://doi.org/10.1038/sj.gt.3302681
[53]
Gonzaga, S., Henriques-Coelho, T., Davey, M., Zoltick, P.W., Leite-Moreira, A.F., Correia-Pinto, J., etal. (2008) Cystic Adenomatoid Malformations Are Induced by Localized FGF10 Overexpression in Fetal Rat Lung. AmericanJournalofRespiratoryCellandMolecularBiology, 39, 346-355. https://doi.org/10.1165/rcmb.2007-0290oc
[54]
Massaro, G., Mattar, C.N.Z., Wong, A.M.S., Sirka, E., Buckley, S.M.K., Herbert, B.R., etal. (2018) Fetal Gene Therapy for Neurodegenerative Disease of Infants. NatureMedicine, 24, 1317-1323. https://doi.org/10.1038/s41591-018-0106-7
[55]
Coutelle, C. and Ashcroft, R. (2012) Risks, Benefits and Ethical, Legal, and Societal Considerations for Translation of Prenatal Gene Therapy to Human Application. In: Coutelle, C. and Waddington, S. Eds., Prenatal Gene Therapy, Humana Press, 371-387. https://doi.org/10.1007/978-1-61779-873-3_17
Peranteau, W.H. and Flake, A.W. (2020) The Future of in utero Gene Therapy. MolecularDiagnosis&Therapy, 24, 135-142. https://doi.org/10.1007/s40291-020-00445-y
[58]
Lee, C.C.I., Jimenez, D.F., Kohn, D.B. and Tarantal, A.F. (2005) Fetal Gene Transfer Using Lentiviral Vectors and the Potential for Germ Cell Transduction in Rhesus Monkeys (Macaca Mulatta). HumanGeneTherapy, 16, 417-425. https://doi.org/10.1089/hum.2005.16.417
[59]
Rangarajan, S., Walsh, L., Lester, W., Perry, D., Madan, B., Laffan, M., etal. (2017) AAV5-Factor VIII Gene Transfer in Severe Hemophilia A. NewEnglandJournalofMedicine, 377, 2519-2530. https://doi.org/10.1056/nejmoa1708483
[60]
Thomsen, G., Burghes, A.H.M., Hsieh, C., Do, J., Chu, B.T.T., Perry, S., etal. (2021) Biodistribution of Onasemnogene Abeparvovec DNA, mRNA and SMN Protein in Human Tissue. NatureMedicine, 27, 1701-1711. https://doi.org/10.1038/s41591-021-01483-7
[61]
Sagar, R., Almeida-Porada, G., Blakemore, K., Chan, J.K.Y., Choolani, M., Götherström, C., etal. (2020) Fetal and Maternal Safety Considerations for in utero Therapy Clinical Trials: iFeTiS Consensus Statement. MolecularTherapy, 28, 2316-2319. https://doi.org/10.1016/j.ymthe.2020.10.012
Mattar, C.N.Z., Gil-Farina, I., Rosales, C., Johana, N., Tan, Y.Y.W., McIntosh, J., etal. (2017) In utero Transfer of Adeno-Associated Viral Vectors Produces Long-Term Factor IX Levels in a Cynomolgus Macaque Model. MolecularTherapy, 25, 1843-1853. https://doi.org/10.1016/j.ymthe.2017.04.003
[64]
Lee, S. and Lee, J.H. (2023) Cell and Gene Therapy Regulatory, Pricing, and Reimbursement Framework: With a Focus on South Korea and the Eu. FrontiersinPublicHealth, 11, Article 1109873. https://doi.org/10.3389/fpubh.2023.1109873
[65]
Bose, S.K., Menon, P. and Peranteau, W.H. (2021) InUtero Gene Therapy: Progress and Challenges. TrendsinMolecularMedicine, 27, 728-730. https://doi.org/10.1016/j.molmed.2021.05.007