全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同饵料特性对水层转化期海马摄食行为的影响研究
Effects of Different Feed Characteristics on Hippocampal Feeding Behavior during Water Layer Transformation

DOI: 10.12677/ojfr.2025.121003, PP. 20-28

Keywords: 大海马(Hippocampus kuda Bleeker),摄食行为,饵料特性,摄食参数
Hippocampus kuda (Hippocampus kuda Bleeker)
, Ingestive Behavior, Bait Characteristic, Ingestive Parameter

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高海马(5.67 ± 0.12 cm)幼苗在水层转化期的成活率和明确水层转化期幼海马最适规格饵料,本研究运用行为学手段,通过控制不同的饵料特性,揭示海马的摄食行为和偏好选择,为提高海马成活率和饵料开发提供科学数据。本研究共设置不同饵料规格(活卤虫:2215 ± 51.8 μm、5080 ± 83.6 μm、8440 ± 114.1 μm及其组合)和饵料种类(活卤虫、冰鲜糠虾)两个试验。结果显示,通过海马对饵料反应的敏感性及摄食参数的观察,确定最适饵料规格为8440 ± 114.1 μm的活卤虫。比较相同规格下不同种类饵料试验中,活卤虫对饵料敏感性及摄食参数均显著高于冰鲜糠虾。综上,饵料规格和饵料种类对海马的摄食行为均有一定影响;在适宜的饵料规格和种类下,大海马摄食活跃,对饵料敏感度高,摄食成功率显著提高。
In order to improve the survival rate of hippocampi (5.67 ± 0.12 cm) seedlings during the water layer conversion period and determine the optimal bait of young hippocampi during the water layer conversion period, this study used behavioral methods to reveal the ingestive behavior and preference selection of hippocampi by controlling different bait characteristics, so as to provide scientific data for improving the survival rate of hippocampi and bait exploitation. In this study, two experiments were conducted with different bait specifications (live artemia: 2215 ± 51.8 μm, 5080 ± 83.6 μm, 8440 ± 114.1 μm and their combinations) and bait types (live artemia and chilled bran shrimp). The results showed that 8440 ± 114.1 μm of live artemia was the most suitable bait by observing the sensitivity of hippocampi to bait and ingestive parameters. The sensitivity of live artemia to bait and ingestive parameters were significantly higher than those of chilled bran shrimp. In conclusion, the ingestive behavior of hippocampi was affected by both bait specifications and bait types. In the suitable bait specifications and types, the hippocampi were active in ingestion, highly sensitive to bait and the ingestive success rate was significantly improved.

References

[1]  陈少波, 单乐周, 曾国强, 大江秀彦. 真鲷人工育苗和中间培育试验报告[J]. 温州师范学院学报, 2003, 24(5): 78-81.
[2]  Cunha, I. and Planas, M. (1999) Optimal Prey Size for Early Turbot Larvae (Scophthalmus maximus L.) Based on Mouth and Ingested Prey Size. Aquaculture, 175, 103-110.
https://doi.org/10.1016/s0044-8486(99)00040-x
[3]  Roos, G., Leysen, H., Van Wassenbergh, S., Herrel, A., Jacobs, P., Dierick, M., et al. (2009) Linking Morphology and Motion: A Test of a Four‐Bar Mechanism in Seahorses. Physiological and Biochemical Zoology, 82, 7-19.
https://doi.org/10.1086/589838
[4]  Olivotto, I., Maron, B.J., Appelbaum, E., Harrigan, C.J., Salton, C., Gibson, C.M., et al. (2010) Spectrum and Clinical Significance of Systolic Function and Myocardial Fibrosis Assessed by Cardiovascular Magnetic Resonance in Hypertrophic Cardiomyopathy. The American Journal of Cardiology, 106, 261-267.
https://doi.org/10.1016/j.amjcard.2010.03.020
[5]  Scharf, F.S., Buckel, J.A. and Juanes, F. (2009) Contrasting Patterns of Resource Utilization between Juvenile Estuarine Predators: The Influence of Relative Prey Size and Foraging Ability on the Ontogeny of Piscivory. Canadian Journal of Fisheries and Aquatic Sciences, 66, 790-801.
https://doi.org/10.1139/f09-030
[6]  Sheng, J., Lin, Q., Chen, Q., Gao, Y., Shen, L. and Lu, J. (2006) Effects of Food, Temperature and Light Intensity on the Feeding Behavior of Three-Spot Juvenile Seahorses, Hippocampus trimaculatus Leach. Aquaculture, 256, 596-607.
https://doi.org/10.1016/j.aquaculture.2006.02.026
[7]  Confer, J.L. and Blades, P.I. (1975) Omnivorous Zooplankton and Planktivorous Fish. Limnology and Oceanography, 20, 571-579.
https://doi.org/10.4319/lo.1975.20.4.0571
[8]  刘正文, 朱松泉. 大口胭脂鱼鱼种的摄食节律和日摄食率[J]. 大连水产学院学报, 2006, 21(3): 290-293.
[9]  方巍. 黄颡鱼摄食和投喂策略的研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2010.
[10]  袁显春, 何小燕, 张孟才, 等. 蛇鳄龟稚龟摄食行为初探[J]. 水产科技情报, 2014, 41(5): 259-263.
[11]  Kendrick, A.J. and Hyndes, G.A. (2005) Variations in the Dietary Compositions of Morphologically Diverse Syngnathid Fishes. Environmental Biology of Fishes, 72, 415-427.
https://doi.org/10.1007/s10641-004-2597-y
[12]  Storero, L.P. and González, R.A. (2008) Feeding Habits of the Seahorse Hippocampus patagonicus in San Antonio Bay (Patagonia, Argentina). Journal of the Marine Biological Association of the United Kingdom, 88, 1503-1508.
https://doi.org/10.1017/s0025315408002506
[13]  Kitsos, M.‐S., Tzomos, T., Anagnostopoulou, L. and Koukouras, A. (2008) Diet Composition of the Seahorses, Hippocampus guttulatus Cuvier, 1829 and Hippocampus hippocampus (L., 1758) (Teleostei, Syngnathidae) in the Aegean Sea. Journal of Fish Biology, 72, 1259-1267.
https://doi.org/10.1111/j.1095-8649.2007.01789.x
[14]  Woods, C.M.C. (2003) Effect of Stocking Density and Gender Segregation in the Seahorse Hippocampus Abdominalis. Aquaculture, 218, 167-176.
https://doi.org/10.1016/s0044-8486(02)00202-8
[15]  陆伟民. 大口黑鲈仔, 稚鱼生长和食性的观察[J]. 水产学报, 1994, 18(4): 330-334.
[16]  Payne, M.F. and Rippingale, R.J. (2000) Rearing West Australian Seahorse, Hippocampus Subelongatus, Juveniles on Copepod Nauplii and Enriched Artemia. Aquaculture, 188, 353-361.
https://doi.org/10.1016/s0044-8486(00)00349-5
[17]  王子晖, 徐永健, 李响. 大海马(Hippocampus kuda Bleeker)幼体口吻部骨骼形态观察及其对摄食的影响[J]. 渔业科学进展, 2015, 36(5): 126-130.
[18]  Palma, J., Stockdale, J., Correia, M. and Andrade, J.P. (2008) Growth and Survival of Adult Long Snout Seahorse (Hippocampus guttulatus) Using Frozen Diets. Aquaculture, 278, 55-59.
https://doi.org/10.1016/j.aquaculture.2008.03.019
[19]  Lin, Q., Lin, J., Zhang, D. and Wang, Y. (2009) Weaning of Juvenile Seahorses Hippocampus Erectus Perry, 1810 from Live to Frozen Food. Aquaculture, 291, 224-229.
https://doi.org/10.1016/j.aquaculture.2009.03.031

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133