全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于趋势性改进的灰色主成分聚类模型
Grey Principal Component Clustering Model Based on Trend Improvement

DOI: 10.12677/ojns.2025.132024, PP. 231-242

Keywords: 主成分聚类,灰色关联度,趋势概率,波动型序列
Principal Component Clustering
, Grey Correlation, Trend Probability, Wave Sequence

Full-Text   Cite this paper   Add to My Lib

Abstract:

在灰色主成分分析方法的研究中,针对原有方法中用于主成分分析的关联度矩阵的伪相关性和波动型序列量化不准确的问题。在两方面进行改进,一是改进灰色相对关联度的取值范围,将其从0.5~1拓展到0~1;二是基于斜率思路引入了趋势概率关联度指标,度量序列在趋势变化方向上的表征。结合两种关联度,提出了可以替换相关系数或协方差矩阵的新关联度矩阵。模拟与实证结果显示,改进的灰色关联度矩阵能够更好的度量波动型序列特征,将其用于主成分分析聚类,可以发现更加丰富和合理的结果,与一般模型相比效果更优。
In the research of the grey principal component analysis method, the issues of pseudo-correlation and inaccurate quantification of fluctuating sequences in the correlation matrix for principal component analysis were tackled. Two improvements were made in two respects. Firstly, the range of grey relative correlation was expanded from 0.5~1 to 0~1. Secondly, based on the slope concept, a trend probability correlation index was introduced to measure the representation of sequences in the trend change direction. By combining the two correlation indices, a new correlation matrix that can replace the correlation coefficient or covariance matrix was proposed. Simulation and empirical results indicate that the improved grey correlation matrix can better measure the features of fluctuating sequences and be used for principal component analysis clustering to yield more diverse and reasonable results, outperforming general models.

References

[1]  李雄英, 颜斌. 稳健主成分聚类方法的构建及其比较研究[J]. 数理统计与管理, 2019, 38(5): 849-857.
[2]  刘思峰, 杨英杰, 吴利丰. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2014: 50-95.
[3]  尉雪波, 张辉. 灰色主成分分析及其应用[J]. 山东财政学院学报, 2004(5): 57-59, 63.
[4]  Tung, C. and Lee, Y. (2009) A Novel Approach to Construct Grey Principal Component Analysis Evaluation Model. Expert Systems with Applications, 36, 5916-5920.
https://doi.org/10.1016/j.eswa.2008.07.007
[5]  Zhao, N. and Shao, H.Y. (2014) Robust Principal Component Analysis Algorithm Based on Nonparametric Correlation Coefficient Matrix. Advanced Materials Research, 989-994, 2613-2616.
https://doi.org/10.4028/www.scientific.net/amr.989-994.2613
[6]  袁周, 方志耕. 灰色主成分评价模型的构建及其应用[J]. 系统工程理论与实践, 2016, 36(8): 2086-2090.
[7]  傅为忠, 代露露, 潘群群. 基于主成分与灰色聚类相结合的安徽省主导产业选择研究[J]. 华东经济管理, 2013, 27(3): 18-24.
[8]  陈宝平. 基于主成分分析和灰色聚类对我国居民收入差距分析[J]. 数学的实践与认识, 2018, 48(24): 134-143.
[9]  崔立志, 刘思峰, 李致平, 等. 灰色斜率相似关联度研究及其应用[J]. 统计与信息论坛, 2010, 25(3): 56-59.
[10]  黄山松, 曾波. 基于数据增量变化率的邓氏关联度模型的优化[J]. 统计与决策, 2010(22): 4-7.
[11]  刘小妹, 柯林, 于俊杰. 灰色绝对关联度的改进模型[J]. 数学的实践与认识, 2018, 48(10): 16-22.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133