全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

充液管路和弹性板耦合的ISM-FEM混合计算方法
Hybrid ISM-FEM Computational Approach for Coupled Fluid-Filled Pipelines and Elastic Plates

DOI: 10.12677/ojav.2025.131001, PP. 1-11

Keywords: 振动响应,阻抗综合法,十四方程,充液管路,弹性板
Vibration Response
, Impedance Synthesis, Fourteen Equations, Liquid Filling Line, Elastomer Plates

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于“十四方程”理论发展而来的阻抗综合法(ISM)具有物理清晰、求解迅速和精度高的特点,常应用于复杂充液管路系统的声振耦合求解。然而在充液管路系统与壳体耦合的实际工程应用中,难以单纯应用阻抗综合法求解。若采用有限元方法(FEM)求解,不仅需要大量计算资源,且难以厘清声振耦合传递的机制。本文以管路和弹性板的耦合系统为例,利用管路与弹性板耦合处力和位移等边界条件的连续性,给出一种阻抗综合法和有限元方法相结合的计算方法。求解了两种充液管路和弹性板耦合系统的响应,通过与FEM对比,验证本方法的正确性,并在此基础上分析了弯管以及管内流体对模型固有频率和振动响应的影响,为与壳体耦合的复杂充液管路的声振耦合传递提供一种高效且物理过程清晰的计算方法。
Based on the “14 equations” theory, the impedance synthesis method (ISM) has the characteristics of physical clarity, quick solution and high accuracy, and is often applied to the acoustic and vibration coupling solution of complex liquid-filled pipeline systems. However, in practical, the liquid-filled pipeline is often coupled with the shell, and it is difficult to solve the problem by applying the ISM directly. If the finite element method (FEM) is used, it requires a lot of computational resources, and also makes it difficult to clarify the physical mechanism of the couplings. In this paper, taking the coupled pipeline and elastic plate as an example, utilizing the boundary conditions such as force and displacement at the couplings, a combined ISM and FEM method is proposed for the prediction of the coupled system. The method is verified by comparing with the FEM, and the influence of the elbow and the fluid in the pipe on the natural frequency and vibration response of the model is analyzed, so as to provide an efficient calculation method for the vibroacoustic transmission of the complex liquid-filled pipeline coupled with the shell structures.

References

[1]  Wiggert, D.C., Hatfield, F.J. and Stuckenbruck, S. (1987) Analysis of Liquid and Structural Transients in Piping by the Method of Characteristics. Journal of Fluids Engineering, 109, 161-165.
https://doi.org/10.1115/1.3242638
[2]  Lesmez, M.W., Wiggert, D.C. and Hatfield, F.J. (1990) Modal Analysis of Vibrations in Liquid-Filled Piping Systems. Journal of Fluids Engineering, 112, 311-318.
https://doi.org/10.1115/1.2909406
[3]  Wiggert, D.C. and Tijsseling, A.S. (2001) Fluid Transients and Fluid-Structure Interaction in Flexible Liquid-Filled Piping. Applied Mechanics Reviews, 54, 455-481.
https://doi.org/10.1115/1.1404122
[4]  Lavooij, C.S.W. and Tusseling, A.S. (1991) Fluid-structure Interaction in Liquid-Filled Piping Systems. Journal of Fluids and Structures, 5, 573-595.
https://doi.org/10.1016/s0889-9746(05)80006-4
[5]  李艳华, 柳贡民. 流体管道流固耦合14方程频域传递矩阵法[J]. 船海工程, 2009, 38(5): 106-111.
[6]  李艳华, 柳贡民, 马俊. 考虑流固耦合的典型管段结构振动特性分析[J]. 振动与冲击, 2010, 29(6): 50-53, 124, 234-235.
[7]  李帅军, 柳贡民, 陈浩. 考虑流固耦合的管内压力波传递特性分析[J]. 振动与冲击, 2012, 31(24): 177-182.
[8]  尹志勇, 孙玉东. 一种船舶液体管道系统振动频域响应预报方法[J]. 船舶力学, 2013, 17(11): 1352-1360.
[9]  吴江海, 尹志勇, 孙凌寒, 等. 一种船舶充液管路声振耦合工程计算方法[J]. 船舶力学, 2019, 23(7): 874-881.
[10]  吴江海, 尹志勇, 孙玉东, 等. 基于传递矩阵法的U型管流固耦合特性研究[J]. 应用力学学报, 2021, 38(5): 1890-1894.
[11]  Wu, J., Tijsseling, A.S., Sun, Y. and Yin, Z. (2020) In-Plane Wave Propagation Analysis of Fluid-Filled L-Shape Pipe with Multiple Supports by Using Impedance Synthesis Method. International Journal of Pressure Vessels and Piping, 188, Article 104234.
https://doi.org/10.1016/j.ijpvp.2020.104234
[12]  吴江海, 尹志勇, 孙玉东, 等. 管路-圆柱壳耦合振动功率流与声辐射特性研究[J]. 中国造船, 2021, 62(2): 145-153.
[13]  吴江海, 尹志勇, 孙凌寒, 等. 船舶充液管路振动响应计算与试验[J]. 振动测试与诊断, 2019, 39(4): 832-837.
[14]  吴江海, 尹志勇, 孙玉东, 等. 管路-船体耦合振动及水下声辐射研究[J]. 振动与冲击, 2021, 40(6): 165-170.
[15]  刘碧龙, 李晓东, 田静, 等. 具有弹性障板的有限长充液管道的管口声辐射[J]. 声学学报, 2004, 29(2): 131-136.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133