全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Flavonoids as Modulators of Nrf2 Signaling Pathway in Alleviating Cisplatin-Induced Organ Toxicity

DOI: 10.4236/ym.2025.91006, PP. 52-77

Keywords: Flavonoids, Cisplatin, Nrf2, Oxidative Stress, Natural Product

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cisplatin, a highly efficacious platinum-based anticancer agent, finds widespread application in the management of diverse malignant solid tumors, exhibiting commendable therapeutic outcomes. However, its clinical practice is limited due to its severe adverse effects, including nephrotoxicity, hepatotoxicity, cardiotoxicity, and ototoxicity. Although the exact mechanism of cisplatin toxicity is still unclear, oxidative stress, inflammation, mitochondrial damage, endoplasmic reticulum stress (ER stress), apoptosis, and DNA damage are involved in the processes of cisplatin toxicity. At present, a great amount of evidence has shown that flavonoids have beneficial effects on several cisplatin-induced organ toxicity by their powerful antioxidant properties. The activation of Nrf2 by flavonoids could potentially serve as a key mechanism for alleviating organ toxicity induced by cisplatin. In this review, we summarize the basic structure, regulation, and function of Nrf2, as well as focus on the role of Nrf2 in reducing cisplatin-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity.

References

[1]  Ghosh, S. (2019) Cisplatin: The First Metal Based Anticancer Drug. Bioorganic Chemistry, 88, Article 102925.
https://doi.org/10.1016/j.bioorg.2019.102925
[2]  Basu, A. and Krishnamurthy, S. (2010) Cellular Responses to Cisplatin-Induced DNA Damage. Journal of Nucleic Acids, 2010, Article 201367.
https://doi.org/10.4061/2010/201367
[3]  Astolfi, L., Ghiselli, S., Guaran, V., Chicca, M., Simoni, E., Olivetto, E., Lelli, G. and Martini, A. (2013) Correlation of Adverse Effects of Cisplatin Administration in Patients Affected by Solid Tumours: A Retrospective Evaluation. Oncology Reports, 29, 1285-1292.
https://doi.org/10.3892/or.2013.2279
[4]  Mirzaei, S., Mohammadi, A.T., Gholami, M.H., Hashemi, F., Zarrabi, A., Zabolian, A., Hushmandi, K., Makvandi, P., Samec, M., Liskova, A., Kubatka, P., Nabavi, N., Aref, A.R., Ashrafizadeh, M., Khan, H. and Najafi, M. (2021) Nrf2 Signaling Pathway in Cisplatin Chemotherapy: Potential Involvement in Organ Protection and Chemoresistance. Pharmacological Research, 167, Article 105575.
https://doi.org/10.1016/j.phrs.2021.105575
[5]  Taghizadeh, F., Hosseinimehr, S.J., Zargari, M., Karimpour Malekshah, A., Mirzaei, M. and Talebpour Amiri, F. (2021) Alleviation of Cisplatin-Induced Hepatotoxicity by Gliclazide: Involvement of Oxidative Stress and Caspase-3 Activity. Pharmacology Research & Perspectives, 9, e00788.
https://doi.org/10.1002/prp2.788
[6]  Kaulmann, A. and Bohn, T. (2014) Carotenoids, Inflammation, and Oxidative Stress—Implications of Cellular Signaling Pathways and Relation to Chronic Disease Prevention. Nutrition Research, 34, 907-929.
https://doi.org/10.1016/j.nutres.2014.07.010
[7]  Plaisance, V., Brajkovic, S., Tenenbaum, M., Favre, D., Ezanno, H., Bonnefond, A., Bonner, C., Gmyr, V., Kerr-Conte, J., Gauthier, B.R., Widmann, C., Waeber, G., Pattou, F., Froguel, P. and Abderrahmani, A. (2016) Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL. PLOS ONE, 11, e0163046.
https://doi.org/10.1371/journal.pone.0163046
[8]  Waseem, M., Bhardwaj, M., Tabassum, H., Raisuddin, S. and Parvez, S. (2015) Cisplatin Hepatotoxicity Mediated by Mitochondrial Stress. Drug and Chemical Toxicology, 38, 452-459.
https://doi.org/10.3109/01480545.2014.992437
[9]  Kamt, S.F., Liu, J. and Yan, L.-J. (2023) Renal-Protective Roles of Lipoic Acid in Kidney Disease. Nutrients, 15, Article 1732.
https://doi.org/10.3390/nu15071732
[10]  Athira, K.V., Madhana, R.M. and Lahkar, M. (2016) Flavonoids, the Emerging Dietary Supplement against Cisplatin-Induced Nephrotoxicity. Chemico-Biological Interactions, 248, 18-20.
https://doi.org/10.1016/j.cbi.2016.02.005
[11]  Zeng, X.Q., Xi, Y. and Jiang, W.B. (2019) Protective Roles of Flavonoids and Flavonoid-Rich Plant Extracts against Urolithiasis: A Review. Critical Reviews in Food Science and Nutrition, 59, 2125-2135.
https://doi.org/10.1080/10408398.2018.1439880
[12]  Liu, Y.L., Qian, J.F., Li, J.J., Xing, M.Y., Grierson, D., Sun, C.D., Xu, C.J., Li, X. and Chen, K.S. (2022) Hydroxylation Decoration Patterns of Flavonoids in Horticultural Crops: Chemistry, Bioactivity, and Biosynthesis. Horticulture Research, 9, uhab068.
https://doi.org/10.1093/hr/uhab068
[13]  Silva-Islas, C.A. and Maldonado, P.D. (2018) Canonical and Non-Canonical Mechanisms of Nrf2 Activation. Pharmacological Research, 134, 92-99.
https://doi.org/10.1016/j.phrs.2018.06.013
[14]  Moratilla-Rivera, I., Sánchez, M., Valdés-González, J.A. and Gómez-Serranillos, M.P. (2023) Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. International Journal of Molecular Sciences, 24, Article 3748.
https://doi.org/10.3390/ijms24043748
[15]  Tonelli, C., Chio, I.I.C. and Tuveson, D.A. (2018) Transcriptional Regulation by Nrf2. Antioxidants & Redox Signaling, 29, 1727-1745.
https://doi.org/10.1089/ars.2017.7342
[16]  Motohashi, H., O’Connor, T., Katsuoka, F., Engel, J.D. and Yamamoto, M. (2002) Integration and Diversity of the Regulatory Network Composed of Maf and CNC Families of Transcription Factors. Gene, 294, 1-12.
https://doi.org/10.1016/S0378-1119(02)00788-6
[17]  Lin, D.-W., Hsu, Y.-C., Chang, C.-C., Hsieh, C.-C. and Lin, C.-L. (2023) Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. International Journal of Molecular Sciences, 24, Article 6053.
https://doi.org/10.3390/ijms24076053
[18]  Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D. and Yamamoto, M. (1999) Keap1 Represses Nuclear Activation of Antioxidant Responsive Elements by Nrf2 through Binding to the Amino-Terminal Neh2 Domain. Genes & Development, 13, 76-86.
https://doi.org/10.1101/gad.13.1.76
[19]  Cullinan, S.B., Gordan, J.D., Jin, J., Harper, J.W. and Diehl, J.A. (2004) The Keap1-BTB Protein Is an Adaptor that Bridges Nrf2 to a Cul3-Based E3 Ligase: Oxidative Stress Sensing by a Cul3-Keap1 Ligase. Molecular and Cellular Biology, 24, 8477-8486.
https://doi.org/10.1128/MCB.24.19.8477-8486.2004
[20]  Velichkova, M. and Hasson, T. (2005) Keap1 Regulates the Oxidation-Sensitive Shuttling of Nrf2 into and Out of the Nucleus via a Crm1-Dependent Nuclear Export Mechanism. Molecular and Cellular Biology, 25, 4501-4513.
https://doi.org/10.1128/MCB.25.11.4501-4513.2005
[21]  Baird, L., Llères, D., Swift, S. and Dinkova-Kostova, A.T. (2013) Regulatory Flexibility in the Nrf2-Mediated Stress Response Is Conferred by Conformational Cycling of the Keap1-Nrf2 Protein Complex. Proceedings of the National Academy of Sciences of the United States of America, 110, 15259-15264.
https://doi.org/10.1073/pnas.1305687110
[22]  Zhu, L., He, S.L., Huang, L., Ren, D.G., Nie, T.J., Tao, K., Xia, L., Lu, F.F., Mao, Z.X., Yang, Q. (2022) Chaperone-Mediated Autophagy Degrades Keap1 and Promotes Nrf2-Mediated Antioxidative Response. Aging Cell, 21, e13616.
https://doi.org/10.1111/acel.13616
[23]  Tomar, A., Kaushik, S., et al. (2023) The Dietary Isoflavone Daidzein Mitigates Oxidative Stress, Apoptosis, and Inflammation in CDDP‐Induced Kidney Injury in Rats: Impact of the MAPK Signaling Pathway. Journal of Biochemical and Molecular Toxicology, 34, 1-8.
https://sci-hub.st/10.1002/jbt.22431
[24]  Tan, C.T., Soh, N.J.H., Chang, H.-C. and Yu, V.C. (2023) p62/SQSTM1 in Liver Diseases: The Usual Suspect with Multifarious Identities. The FEBS Journal, 290, 892-912.
https://doi.org/10.1111/febs.16317
[25]  Zhang, Z. and Costa, M. (2021) p62 Functions as a Signal Hub in Metal Carcinogenesis. Seminars in Cancer Biology, 76, 267-278.
https://doi.org/10.1016/j.semcancer.2021.04.014
[26]  Ogura, T., Tong, K.I., Mio, K., Maruyama, Y., Kurokawa, H., Sato, C. and Yamamoto, M. (2010) Keap1 Is a Forked-Stem Dimer Structure with Two Large Spheres Enclosing the Intervening, Double Glycine Repeat, and C-Terminal Domains. Proceedings of the National Academy of Sciences of the United States of America, 107, 2842-2847.
https://doi.org/10.1073/pnas.0914036107
[27]  Shelton, L.M., Park, B.K. and Copple, I.M. (2013) Role of Nrf2 in Protection against Acute Kidney Injury. Kidney International, 84, 1090-1095.
https://doi.org/10.1038/ki.2013.248
[28]  Horie, Y., Suzuki, T., Inoue, J., Iso, T., Wells, G., Moore, T.W., Mizushima, T., Dinkova-Kostova, A.T., Kasai, T., Kamei, T., Koshiba, S. and Yamamoto, M. (2021) Molecular Basis for the Disruption of Keap1-Nrf2 Interaction via Hinge & Latch Mechanism. Communications Biology, 4, Article No. 576.
https://doi.org/10.1038/s42003-021-02100-6
[29]  Li, J.D., Wang, T.Q., Liu, P.P., et al. (2021) Hesperetin Ameliorates Hepatic Oxidative Stress and Inflammation via the PI3K/AKT-Nrf2-ARE Pathway in Oleic Acid-Induced HepG2 Cells and a Rat Model of High-Fat Diet-Induced NAFLD. Food & Function, 12, 3898-3918.
https://doi.org/10.1039/D0FO02736G
[30]  Wu, S., Liao, X., Zhu, Z., Huang, R., Chen, M., Huang, A., Zhang, J., Wu, Q., Wang, J. and Ding, Y. (2022) Antioxidant and Anti-Inflammation Effects of Dietary Phytochemicals: The Nrf2/NF-κB Signalling Pathway and Upstream Factors of Nrf2. Phytochemistry, 204, Article 113429.
https://doi.org/10.1016/j.phytochem.2022.113429
[31]  Chowdhry, S., Zhang, Y., McMahon, M., Sutherland, C., Cuadrado, A. and Hayes, J.D. (2013) Nrf2 Is Controlled by Two Distinct β-TrCP Recognition Motifs in Its Neh6 Domain, One of which can be Modulated by GSK-3 Activity. Oncogene, 32, 3765-3781.
https://doi.org/10.1038/onc.2012.388
[32]  Rada, P., Rojo, A.I., Chowdhry, S., McMahon, M., Hayes, J.D. and Cuadrado, A. (2011) SCF/β-TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner. Molecular and Cellular Biology, 31, 1121-1133.
https://doi.org/10.1128/MCB.01204-10
[33]  Bryan, H.K., Olayanju, A., Goldring, C.E. and Park, B.K. (2013) The Nrf2 Cell Defence Pathway: Keap1-Dependent and-Independent Mechanisms of Regulation. Biochemical Pharmacology, 85, 705-717.
https://doi.org/10.1016/j.bcp.2012.11.016
[34]  Jain, A.K. and Jaiswal, A.K. (2007) GSK-3β Acts Upstream of Fyn Kinase in Regulation of Nuclear Export and Degradation of NF-E2 Related Factor 2. Journal of Biological Chemistry, 282, 16502-16510.
https://doi.org/10.1074/jbc.M611336200
[35]  Pan, X., Pei, J., Wang, A., Shuai, W., Feng, L., Bu, F., Zhu, Y., Zhang, L., Wang, G. and Ouyang, L. (2022) Development of Small Molecule Extracellular Signal-Regulated Kinases (ERKs) Inhibitors for Cancer Therapy. Acta Pharmaceutica Sinica B, 12, 2171-2192.
https://doi.org/10.1016/j.apsb.2021.12.022
[36]  Sandberg, M., Patil, J., D’Angelo, B., Weber, S.G. and Mallard, C. (2014) NRF2-Regulation in Brain Health and Disease: Implication of Cerebral Inflammation. Neuropharmacology, 79, 298-306.
https://doi.org/10.1016/j.neuropharm.2013.11.004
[37]  Chen, Y., Liu, K., Zhang, J., Hai, Y., Wang, P., Wang, H., Liu, Q., Wong, C.C.L., Yao, J., Gao, Y., Liao, Y., Tang, X. and Wang, X.J. (2020) c-Jun NH2-Terminal Protein Kinase Phosphorylates the Nrf2-ECH Homology 6 Domain of Nuclear Factor Erythroid 2-Related Factor 2 and Downregulates Cytoprotective Genes in Acetaminophen-Induced Liver Injury in Mice. Hepatology, 71, 1787-1801.
https://doi.org/10.1002/hep.31116
[38]  Ahmed, S.M.U., Luo, L., Namani, A., Wang, X.J. and Tang, X. (2017) Nrf2 Signaling Pathway: Pivotal Roles in Inflammation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863, 585-597.
https://doi.org/10.1016/j.bbadis.2016.11.005
[39]  Siomek, A. (2022) NF-κB Signaling Pathway and Free Radical Impact. Acta Biochimica Polonica, 59, 323-331.
https://pubmed.ncbi.nlm.nih.gov/22855720/
https://doi.org/10.18388/abp.2012_2116
[40]  Thimmulappa, R.K., Lee, H., Rangasamy, T., Reddy, S.P., Yamamoto, M., Kensler, T.W. and Biswal, S. (2006) Nrf2 Is a Critical Regulator of the Innate Immune Response and Survival during Experimental Sepsis. Journal of Clinical Investigation, 116, 984-995.
https://doi.org/10.1172/JCI25790
[41]  Chen, L.-G., Zhang, Y.-Q., Wu, Z.-Z., Hsieh, C.-W., Chu, C.-S. and Wung, B.-S. (2018) Peanut Arachidin-1 Enhances Nrf2-Mediated Protective Mechanisms against TNF-α-Induced ICAM-1 Expression and NF-κB Activation in Endothelial Cells. International Journal of Molecular Medicine, 41, 541-547.
https://doi.org/10.3892/ijmm.2017.3238
[42]  Song, G., Tong, J., Wang, Y., Li, Y., Liao, Z., Fan, D. and Fan, X. (2023) Nrf2-Mediated Macrophage Function in Benign Prostatic Hyperplasia: Novel Molecular Insights and Implications. Biomedicine & Pharmacotherapy, 167, Article 115566.
https://doi.org/10.1016/j.biopha.2023.115566
[43]  Huang, W., Zhong, Y., Gao, B., Zheng, B. and Liu, Y. (2023) Nrf2-Mediated Therapeutic Effects of Dietary Flavones in Different Diseases. Frontiers in Pharmacology, 14, Article 1240433.
https://doi.org/10.3389/fphar.2023.1240433
[44]  Zhang, X., He, X., Wei, L., He, Y., Li, Y., Wang, Y. and Li, C. (2023) Nuclear Erythroid 2-Related Factor 2 Protects against Reactive Oxygen Species-Induced Preterm Premature Rupture of Membranes through Regulation of Mitochondria. Biology of Reproduction, 109, 330-339.
https://doi.org/10.1093/biolre/ioad075
[45]  Hafner, A., Bulyk, M.L., Jambhekar, A. and Lahav, G. (2019) The Multiple Mechanisms that Regulate p53 Activity and Cell Fate. Nature Reviews Molecular Cell Biology, 20, 199-210.
https://doi.org/10.1038/s41580-019-0110-x
[46]  Kitazumi, I. and Tsukahara, M. (2011) Regulation of DNA Fragmentation: The Role of Caspases and Phosphorylation. The FEBS Journal, 278, 427-441.
https://doi.org/10.1111/j.1742-4658.2010.07975.x
[47]  Socha, M.W., Flis, W., Wartęga, M. and Stankiewicz, M. (2022) Impact of Oxidative Stress on Molecular Mechanisms of Cervical Ripening in Pregnant Women. International Journal of Molecular Sciences, 23, Article 12780.
https://doi.org/10.3390/ijms232112780
[48]  Redza-Dutordoir, M. and Averill-Bates, D.A. (2016) Activation of Apoptosis Signalling Pathways by Reactive Oxygen Species. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863, 2977-2992.
https://doi.org/10.1016/j.bbamcr.2016.09.012
[49]  Mahmood, Z. and Shukla, Y. (2010) Death Receptors: Targets for Cancer Therapy. Experimental Cell Research, 316, 887-899.
https://doi.org/10.1016/j.yexcr.2009.12.011
[50]  Delaunay-Moisan, A. and Appenzeller-Herzog, C. (2015) The Antioxidant Machinery of the Endoplasmic Reticulum: Protection and Signaling. Free Radical Biology and Medicine, 83, 341-351.
https://doi.org/10.1016/j.freeradbiomed.2015.02.019
[51]  Pierson-Marchandise, M., Gras, V., Moragny, J., Micallef, J., Gaboriau, L., Picard, S., Choukroun, G., Masmoudi, K. and Liabeuf, S. (2017) French National Network of Pharmacovigilance Centres, the Drugs that Mostly Frequently Induce Acute Kidney Injury: A Case-Noncase Study of a Pharmacovigilance Database. British Journal of Clinical Pharmacology, 83, 1341-1349.
https://doi.org/10.1111/bcp.13216
[52]  Liao, J.-C., Li, C.-Y., et al. (2022) Integrated Analysis of Comprehensive Metabolomics and Network Pharmacology to Reveal the Mechanisms of Abelmoschus manihot (L.) Medik. in the Treatment of Cisplatin-Induced Chronic Kidney Disease. Frontiers in Pharmacology, 13, Article 1064498.
https://doi.org/10.3389/fphar.2022.1064498
[53]  Qi, Z.-L., Wang, Z., Li, W., Hou, J.-G., Liu, Y., Li, X.-D., Li, H.-P. and Wang, Y.-P. (2017) Nephroprotective Effects of Anthocyanin from the Fruits of Panax Ginseng (GFA) on Cisplatin-Induced Acute Kidney Injury in Mice. Phytotherapy Research, 31, 1400-1409.
https://doi.org/10.1002/ptr.5867
[54]  Tang, C., Livingston, M.J., Safirstein, R. and Dong, Z. (2023) Cisplatin Nephrotoxicity: New Insights and Therapeutic Implications. Nature Reviews Nephrology, 19, 53-72.
https://doi.org/10.1038/s41581-022-00631-7
[55]  Liu, M., Grigoryev, D.N., Crow, M.T., Haas, M., Yamamoto, M., Reddy, S.P. and Rabb, H. (2009) Transcription Factor Nrf2 Is Protective during Ischemic and Nephrotoxic Acute Kidney Injury in Mice. Kidney International, 76, 277-285.
https://doi.org/10.1038/ki.2009.157
[56]  Lin, S.-Y., Chang, C.-L., Liou, K.-T., Kao, Y.-K., Wang, Y.-H., Chang, C.-C., Kuo, T.B.J., Huang, H.-T., Yang, C.C.H., Liaw, C.-C. and Shen, Y.-C. (2023) The Protective Role of Achyranthes Aspera Extract Against Cisplatin-Induced Nephrotoxicity by Alleviating Oxidative Stress, Inflammation, and PANoptosis. Journal of Ethnopharmacology, 319, Article 117097.
https://doi.org/10.1016/j.jep.2023.117097
[57]  Peyrou, M., Hanna, P.E. and Cribb, A.E. (2007) Cisplatin, Gentamicin, and P-Aminophenol Induce Markers of Endoplasmic Reticulum Stress in the Rat Kidneys. Toxicological Sciences, 99, 346-353.
https://doi.org/10.1093/toxsci/kfm152
[58]  Li, J.-Y., Sun, X.-A., Wang, X., et al. (2023) PGAM5 Exacerbates Acute Renal Injury by Initiating Mitochondria-Dependent Apoptosis by Facilitating Mitochondrial Cytochrome c Release. Acta Pharmacologica Sinica, 45, 125-136.
[59]  Hejazian, S.M., Hosseiniyan Khatibi, S.M., Barzegari, A., Pavon-Djavid, G., Razi Soofiyani, S., Hassannejhad, S., Ahmadian, E., Ardalan, M. and Zununi Vahed, S. (2021) Nrf-2 as a Therapeutic Target in Acute Kidney Injury. Life Sciences, 264, Article 118581.
https://doi.org/10.1016/j.lfs.2020.118581
[60]  Ma, N., Wei, Z., Hu, J., Gu, W. and Ci, X. (2021) Farrerol Ameliorated Cisplatin-Induced Chronic Kidney Disease through Mitophagy Induction via Nrf2/PINK1 Pathway. Frontiers in Pharmacology, 12, Article 768700.
https://doi.org/10.3389/fphar.2021.768700
[61]  Mitazaki, S., Hashimoto, M., Matsuhashi, Y., Honma, S., Suto, M., Kato, N., Nakagawasai, O., Tan-No, K., Hiraiwa, K., Yoshida, M. and Abe, S. (2013) Interleukin-6 Modulates Oxidative Stress Produced during the Development of Cisplatin Nephrotoxicity. Life Sciences, 92, 694-700.
https://doi.org/10.1016/j.lfs.2013.01.026
[62]  Butt, S.S., Khan, K., Badshah, Y., Rafiq, M. and Shabbir, M. (2021) Evaluation of Pro-apoptotic Potential of Taxifolin against Liver Cancer. Biochemistry, Biophysics and Molecular Biology, 9, e11276.
https://doi.org/10.7717/peerj.11276
[63]  Ramadan, S.A., Kamel, E.M., Ewais, M.A., Khowailed, A.A., Hassanein, E.H.M. and Mahmoud, A.M. (2023) Flavonoids of Haloxylon salicornicum (Rimth) Prevent Cisplatin-Induced Acute Kidney Injury by Modulating Oxidative Stress, Inflammation, Nrf2, and SIRT1. Environmental Science and Pollution Research, 30, 49197-49214.
https://doi.org/10.1007/s11356-023-25694-2
[64]  Ju, S.M., Kang, J.G., Bae, J.S., Pae, H.O., Lyu, Y.S. and Jeon, B.H. (2015) The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells. Evidence-Based Complementary and Alternative Medicine, 2015, Article 186436.
https://doi.org/10.1155/2015/186436
[65]  Zhou, M., Dai, Y., Ma, Y., Yan, Y., Hua, M., Gao, Q., Geng, X. and Zhou, Q. (2022) Protective Effects of Liquiritigenin against Cisplatin-Induced Nephrotoxicity via NRF2/SIRT3-Mediated Improvement of Mitochondrial Function. Molecules, 27, Article 3823.
https://doi.org/10.3390/molecules27123823
[66]  Wang, Z., Sun, W., Sun, X., Wang, Y. and Zhou, M. (2020) Kaempferol Ameliorates Cisplatin Induced Nephrotoxicity by Modulating Oxidative Stress, Inflammation and Apoptosis via ERK and NF-κB Pathways. AMB Express, 10, Article No. 58.
https://doi.org/10.1186/s13568-020-00993-w
[67]  Wang, S., Xu, Y., Weng, Y., Fan, X., Bai, Y., Zheng, X., Lou, L. and Zhang, F. (2018) Astilbin Ameliorates Cisplatin-Induced Nephrotoxicity through Reducing Oxidative Stress and Inflammation. Food and Chemical Toxicology, 114, 227-236.
https://doi.org/10.1016/j.fct.2018.02.041
[68]  Sahu, B.D., Mahesh Kumar, J. and Sistla, R. (2015) Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways. PLOS ONE, 10, e0134139.
https://doi.org/10.1371/journal.pone.0134139
[69]  Tomar, T.A., Vasisth, S., et al. (2017) Galangin Ameliorates Cisplatin Induced Nephrotoxicity in Vivo by Modulation of Oxidative Stress, Apoptosis and Inflammation through Interplay of MAPK Signaling Cascade. Phytomedicine, 34, 154-161.
https://doi.org/10.1016/j.phymed.2017.05.007
[70]  Chen, X., Wei, W., Li, Y., Huang, J. and Ci, X. (2019) Hesperetin Relieves Cisplatin-Induced Acute Kidney Injury by Mitigating Oxidative Stress. Chemico-Biological Interactions, 308, 269-278.
https://doi.org/10.1016/j.cbi.2019.05.040
[71]  Hao, Y., Miao, J., Liu, W., Peng, L., Chen, Y. and Zhong, Q. (2021) Formononetin Protects against Cisplatin‑Induced Acute Kidney Injury through Activation of the PPARα/Nrf2/HO‑1/NQO1 Pathway. International Journal of Molecular Medicine, 47, 511-522.
https://doi.org/10.3892/ijmm.2020.4805
[72]  Chao, C.-S., Tsai, C.-S., Chang, Y.-P., Chen, J.-M., Chin, H.-K. and Yang, S.-C. (2016) Hyperin Inhibits Nuclear Factor Kappa B and Activates Nuclear Factor E2-Related Factor-2 Signaling Pathways in Cisplatin-Induced Acute Kidney Injury in Mice. International Immunopharmacology, 40, 517-523.
https://doi.org/10.1016/j.intimp.2016.09.020
[73]  Shenhai Gong, S., Feng, Y., Zeng, Y., Zhang, H., Pan, M., He, F., Wu, R., Chen, J., Lu, J.L., Zhang, S., Yuan, S. and Chen, X. (2021) Gut Microbiota Accelerates Cisplatin-Induced Acute Liver Injury Associated with Robust Inflammation and Oxidative Stress in Mice. Journal of Translational Medicine, 19, Article No. 147.
https://doi.org/10.1186/s12967-021-02814-5
[74]  Oun, R., Moussa, Y.E. and Wheate, N.J. (2018) The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Transactions, 47, 6645-6653.
https://doi.org/10.1039/C8DT00838H
[75]  Liu, J., Wang, X., Liu, R., Liu, Y., Zhang, T., Fu, H. and Hai, C. (2014) Oleanolic Acid Co-Administration Alleviates Ethanol-Induced Hepatic Injury via Nrf-2 and Ethanol-Metabolizing Modulating in Rats. Chemico-Biological Interactions, 221, 88-98.
https://doi.org/10.1016/j.cbi.2014.07.017
[76]  Shahid, F.F., Farooqui, Z., Alam, T., Abidi, S., Parwez, I. and Khan, F. (2021) Thymoquinone Supplementation Ameliorates Cisplatin-Induced Hepatic Pathophysiology. Human & Experimental Toxicology, 40, 1673-1684.
https://doi.org/10.1177/09603271211003645
[77]  Harun Un, H., Ugan, R.A., Kose, D., Bayir, Y., Cadirci, E., Selli, J. and Halici, Z. (2020) A Novel Effect of Aprepitant: Protection for Cisplatin-Induced Nephrotoxicity and Hepatotoxicity. European Journal of Pharmacology, 880, Article 173168.
https://doi.org/10.1016/j.ejphar.2020.173168
[78]  Bademci, R.R., Erdoğan, M.A., Eroğlu, E., Meral, A., Erdoğan, A., Atasoy, Ö. and Erbaş, O. (2021) Demonstration of the Protective Effect of Ghrelin in the Livers of Rats with Cisplatin Toxicity. Human & Experimental Toxicology, 40, 2178-2187.
https://doi.org/10.1177/09603271211026722
[79]  Fatima, S.F., Suhail, N., Alrashed, M., Wasi, S., Aljaser, F.S., AlSubki, R.A., Alsharidah, A.S. and Banu, N. (2021) Epigallocatechin Gallate and Coenzyme Q10 Attenuate Cisplatin-Induced Hepatotoxicity in Rats via Targeting Mitochondrial Stress and Apoptosis. Journal of Biochemical and Molecular Toxicology, 35, e22701.
https://doi.org/10.1002/jbt.22701
[80]  Neamatallah, T., El-Shitany, N.A., Abbas, A.T., Ali, S.S. and Eid, B.G. (2018) Honey Protects against Cisplatin-Induced Hepatic and Renal Toxicity through Inhibition of NF-κB-Mediated COX-2 Expression and the Oxidative Stress Dependent BAX/Bcl-2/Caspase-3 Apoptotic Pathway. Food & Function, 9, 3743-3754.
https://doi.org/10.1039/C8FO00653A
[81]  Al-Malki, A.L. and Sayed, A.A.R. (2014) Thymoquinone Attenuates Cisplatin-Induced Hepatotoxicity via Nuclear Factor Kappa-β. BMC Complementary and Alternative Medicine, 14, Article 282.
https://doi.org/10.1186/1472-6882-14-282
[82]  Cagin, Y.F., Erdogan, M.A., Sahin, N., Parlakpinar, H., Atayan, Y., Polat, A., Vardi, N., Yildiz, A. and Tanbek, K. (2015) Protective Effects of Apocynin on Cisplatin-Induced Hepatotoxicity in Rats. Archives of Medical Research, 46, 517-526.
https://doi.org/10.1016/j.arcmed.2015.08.005
[83]  Aboraya, D.M., El Baz, A., Risha, E.F. and Abdelhamid, F.M. (2022) Hesperidin Ameliorates Cisplatin Induced Hepatotoxicity and Attenuates Oxidative Damage, Cell Apoptosis, and Inflammation in Rats. Saudi Journal of Biological Sciences, 29, 3157-3166.
https://doi.org/10.1016/j.sjbs.2022.01.052
[84]  Omar, H.A., Mohamed, W.R., Arafa, E.-S.A., Shehata, B.A., El Sherbiny, G.A., Arab, H.H. and Elgendy, A.N.A.M. (2016) Hesperidin Alleviates Cisplatin-Induced Hepatotoxicity in Rats without Inhibiting Its Antitumor Activity. Pharmacological Reports, 68, 349-356.
https://doi.org/10.1016/j.pharep.2015.09.007
[85]  El-Shitany, N.A. and Eid, B. (2017) Proanthocyanidin Protects against Cisplatin-Induced Oxidative Liver Damage through Inhibition of Inflammation and NF-κβ/TLR-4 Pathway. Environmental Toxicology, 32, 1952-1963.
https://doi.org/10.1002/tox.22418
[86]  Athira, K.V., Madhana, R.M., Kasala, E.R., Samudrala, P.K., Lahkar, M. and Gogoi, R. (2016) Morin Hydrate Mitigates Cisplatin-Induced Renal and Hepatic Injury by Impeding Oxidative/Nitrosative Stress and Inflammation in Mice. Journal of Biochemical and Molecular Toxicology, 30, 571-579.
https://doi.org/10.1002/jbt.21817
[87]  Kızıl, H.E., Caglayan, C., Darendelioğlu, E., Ayna, A., Gür, C., Kandemir, F.M. and Küçükler, S. (2023) Morin Ameliorates Methotrexate-Induced Hepatotoxicity via Targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 Signaling Pathways. Molecular Biology Reports, 50, 3479-3488.
https://doi.org/10.1007/s11033-023-08286-8
[88]  Rehman, M.U., Ali, N., Rashid, S., Jain, T., Nafees, S., Tahir, M., Khan, A.Q., Lateef, A., Khan, R., Hamiza, O.O., Kazim, S., Qamar, W. and Sultana, S. (2014) Alleviation of Hepatic Injury by Chrysin in Cisplatin Administered Rats: Probable Role of Oxidative and Inflammatory Markers. Pharmacological Reports, 66, 1050-1059.
https://doi.org/10.1016/j.pharep.2014.06.004
[89]  Omar, H.A., Mohamed, W.R., Arab, H.H. and Arafa, E.-S.A. (2016) Tangeretin Alleviates Cisplatin-Induced Acute Hepatic Injury in Rats: Targeting MAPKs and Apoptosis. PLOS ONE, 11, e0151649.
https://doi.org/10.1371/journal.pone.0151649
[90]  Fukuhara, H., Yagi, M., Ando, K. and Tomita, Y. (2014) Long-Term Administration of Single-Agent Carboplatin (AUC 4) for Advanced Testicular Seminoma Safely Achieved Complete Response in an 80-Year-Old Man with Chronic Heart Failure: A Case Report. Canadian Urological Association Journal, 8, e931-e933.
https://doi.org/10.5489/cuaj.2089
[91]  Hu, Y., Sun, B., Zhao, B., Mei, D., Gu, Q. and Tian, Z. (2018) Cisplatin-Induced Cardiotoxicity with Midrange Ejection Fraction: A Case Report and Review of the Literature. Medicine, 97, e13807.
https://doi.org/10.1097/MD.0000000000013807
[92]  Ali, F.E.M., Hassanein, E.H.M., Abd El-Ghafar, O.A.M., Rashwan, E.K., Saleh, F.M. and Atwa, A.M. (2023) Exploring the Cardioprotective Effects of Canagliflozin against Cisplatin-Induced Cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/Cytochrome C/Bcl-2 Signals. Journal of Biochemical and Molecular Toxicology, 37, e23309.
https://doi.org/10.1002/jbt.23309
[93]  Mansouri, E., Shafiei Seifabadi, Z., Azarbarz, N. and Zare Moaiedi, M. (2023) Effects of Sodium Hydrosulfide (NaHS) on Cisplatin-Induced Hepatic and Cardiac Toxicity. Drug and Chemical Toxicology, 47, 227-234.
https://doi.org/10.1080/01480545.2023.2242008
[94]  Ali, M.I.M., Imbaby, S., Arafat, H.E.K., Maher, S.A., Kolieb, E. and Ali, S.M. (2023) Cardioprotective and Renoprotective Effects of Venlafaxine on Cisplatin-Induced Cardiotoxicity and Nephrotoxicity in Rats. Life Sciences, 320, Article 121561.
https://doi.org/10.1016/j.lfs.2023.121561
[95]  Lin, Z., Bao, Y., Hong, B., Wang, Y., Zhang, X. and Wu, Y. (2021) Salvianolic Acid B Attenuated Cisplatin-Induced Cardiac Injury and Oxidative Stress via Modulating Nrf2 Signal Pathway. The Journal of Toxicological Sciences, 46, 199-207.
https://doi.org/10.2131/jts.46.199
[96]  Afsar, T., Razak, S., Almajwal, A., Shabbir, M. and Khan, M.R. (2019) Evaluating the Protective Potency of Acacia hydaspica R. Parker on Histological and Biochemical Changes Induced by Cisplatin in the Cardiac Tissue of Rats. BMC Complementary Medicine and Therapies, 19, Article No. 182.
https://doi.org/10.1186/s12906-019-2575-8
[97]  El-Awady, E.-S.E., Moustafa, Y.M., Abo-Elmatty, D.M. and Radwan, A. (2011) Cisplatin-Induced Cardiotoxicity: Mechanisms and Cardioprotective Strategies. European Journal of Pharmacology, 650, 335-341.
https://doi.org/10.1016/j.ejphar.2010.09.085
[98]  Muthumani, M. and Prabu, S.M. (2014) Silibinin Potentially Attenuates Arsenic-Induced Oxidative Stress Mediated Cardiotoxicity and Dyslipidemia in Rats. Cardiovascular Toxicology, 14, 83-97.
https://doi.org/10.1007/s12012-013-9227-x
[99]  Jia, Y., Guo, H., Cheng, X., Zhang, Y., Si, M., Shi, J. and Ma, D. (2022) Hesperidin Protects against Cisplatin-Induced Cardiotoxicity in Mice by Regulating the p62-Keap1-Nrf2 Pathway. Food & Function, 13, 4205-4215.
https://doi.org/10.1039/D2FO00298A
[100]  Oguzturk, H., Ciftci, O., Cetin, A., Kaya, K., Disli, O.M., Turtay, M.G., Gürbüz, S. and Basak, N. (2016) Beneficial Effects of Hesperidin Following Cis-Diamminedichloroplatinum-Induced Damage in Heart of Rats. Nigerian Journal of Clinical Practice, 19, 99-103.
https://doi.org/10.4103/1119-3077.173707
[101]  Fang, F., Li, D., Pan, H., Chen, D., Qi, L.L., Zhang, R. and Sun, H. (2011) Luteolin Inhibits Apoptosis and Improves Cardiomyocyte Contractile Function through the PI3K/Akt Pathway in Simulated Ischemia/Reperfusion. Pharmacology, 88, 149-158.
https://doi.org/10.1159/000330068
[102]  Baiyun, R., Li, S., Liu, B., Lu, J., Lv, Y., Xu, J., Wu, J., Li, J., Lv, Z. and Zhang, Z. (2018) Luteolin-Mediated PI3K/AKT/Nrf2 Signaling Pathway Ameliorates Inorganic Mercury-Induced Cardiac Injury. Ecotoxicology and Environmental Safety, 161, 655-661.
https://doi.org/10.1016/j.ecoenv.2018.06.046
[103]  Qi, Y., Fu, S., Pei, D., Fang, Q., Xin, W., Yuan, X., Cao, Y., Shu, Q., Mi, X. and Luo, F. (2022) Luteolin Attenuated Cisplatin-Induced Cardiac Dysfunction and Oxidative Stress via Modulation of Keap1/Nrf2 Signaling Pathway. Free Radical Research, 56, 209-221.
https://doi.org/10.1080/10715762.2022.2067042
[104]  Xia, J., Hu, J., Zhang, R., Liu, W., Zhang, H., Wang, Z., Jiang, S., Wang, Y. and Li, W. (2022) Icariin Exhibits Protective Effects on Cisplatin-Induced Cardiotoxicity via ROS-Mediated Oxidative Stress Injury in Vivo and in Vitro. Phytomedicine, 104, Article 154331.
https://doi.org/10.1016/j.phymed.2022.154331
[105]  Wang, S.-H., Tsai, K.-L., Chou, W.-C., Cheng, H.-C., Huang, Y.-T., Ou, H.-C. and Chang, Y.-C. (2022) Quercetin Mitigates Cisplatin-Induced Oxidative Damage and Apoptosis in Cardiomyocytes through Nrf2/HO-1 Signaling Pathway. The American Journal of Chinese Medicine, 50, 1281-1298.
https://doi.org/10.1142/S0192415X22500537
[106]  Daga, M., Pizzimenti, S., Dianzani, C., Cucci, M.A., Cavalli, R., Grattarola, M., Ferrara, B., Scariot, V., Trotta, F. and Barrera, G. (2019) Ailanthone Inhibits Cell Growth and Migration of Cisplatin Resistant Bladder Cancer Cells through Down-Regulation of Nrf2, YAP, and c-Myc Expression. Phytomedicine, 56, 156-164.
https://doi.org/10.1016/j.phymed.2018.10.034
[107]  Kim, E.H., Jang, H., Shin, D., Baek, S.H. and Roh, J.-L. (2016) Targeting Nrf2 with Wogonin Overcomes Cisplatin Resistance in Head and Neck Cancer. Apoptosis, 21, 1265-1278.
https://doi.org/10.1007/s10495-016-1284-8
[108]  Wang, X.J., Li, Y., Luo, L., Wang, H., Chi, Z., Xin, A., Li, X., Wu, J. and Tang, X. (2014) Oxaliplatin Activates the Keap1/Nrf2 Antioxidant System Conferring Protection against the Cytotoxicity of Anticancer Drugs. Free Radical Biology and Medicine, 70, 68-77.
https://doi.org/10.1016/j.freeradbiomed.2014.02.010
[109]  Zhang, D.D. and Chapman, E. (2020) The Role of Natural Products in Revealing NRF2 Function. Natural Product Reports, 37, 797-826.
https://doi.org/10.1039/C9NP00061E
[110]  Li, D., Hong, X., Zhao, F., Ci, X. and Zhang, S. (2021) Targeting Nrf2 May Reverse the Drug Resistance in Ovarian Cancer. Cancer Cell International, 21, Article No. 116.
https://doi.org/10.1186/s12935-021-01822-1
[111]  Aiello, P., Consalvi, S., Poce, G., Raguzzini, A., Toti, E., Palmery, M., Biava, M., Bernardi, M., Kamal, M.A., Perry, G. and Peluso, I. (2021) Dietary Flavonoids: Nano delivery and Nanoparticles for Cancer Therapy. Seminars in Cancer Biology, 69, 150-165.
https://doi.org/10.1016/j.semcancer.2019.08.029
[112]  Mayada, M.M. El-Gizawy, M., Hosny, E.N., Mourad, H.H. and Abd-El Razik, A.N. (2020) Curcumin Nanoparticles Ameliorate Hepatotoxicity and Nephrotoxicity Induced by Cisplatin in Rats. Naunyn-Schmiedebergs Archives of Pharmacology, 393, 1941-1953.
https://doi.org/10.1007/s00210-020-01888-0
[113]  Zhao, M., Guo, J., Tian, C., Yan, M., Zhou, Y., Liu, C., Pang, M., Du, B. and Cheng, G. (2024) Dual-Targeted Nanoparticles with Removing ROS Inside and Outside Mitochondria for Acute Kidney Injury Treatment. Nanomedicine: Nanotechnology, Biology and Medicine, 55, Article 102725.
https://doi.org/10.1016/j.nano.2023.102725
[114]  Hu, K., Miao, L., Goodwin, T.J., Li, J., Liu, Q. and Huang, L. (2017) Quercetin Remodels the Tumor Microenvironment to Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles. ACS Nano, 11, 4916-4925.
https://doi.org/10.1021/acsnano.7b01522
[115]  Pecorini, G., Ferraro, E. and Puppi, D. (2023) Polymeric Systems for the Controlled Release of Flavonoids. Pharmaceutics, 15, Article 628.
https://doi.org/10.3390/pharmaceutics15020628
[116]  Mehnath, S., Arjama, M., Rajan, M., Annamalai, G. and Jeyaraj, M. (2018) Co-Encapsulation of Dual Drug Loaded in MLNPs: Implication on Sustained Drug Release and Effectively Inducing Apoptosis in Oral Carcinoma Cells. Biomedicine & Pharmacotherapy, 104, 661-671.
https://doi.org/10.1016/j.biopha.2018.05.096
[117]  Zhao, H., Zhu, W., Xie, P., Li, H., Zhang, X., Sun, X., Yu, J. and Xing, L. (2014) A Phase I Study of Concurrent Chemotherapy and Thoracic Radiotherapy with Oral Epigallocatechin-3-Gallate Protection in Patients with Locally Advanced Stage III Non-Small-Cell Lung Cancer. Radiotherapy and Oncology, 110, 132-136.
https://doi.org/10.1016/j.radonc.2013.10.014
[118]  Ferry, D.R., Smith, A., Malkhandi, J., Fyfe, D.W., deTakats, P.G., Anderson, D., Baker, J. and Kerr, D.J. (1996) Phase I Clinical Trial of the Flavonoid Quercetin: Pharmacokinetics and Evidence for in Vivo Tyrosine Kinase Inhibition. Clinical Cancer Research, 2, 659-668.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133