Human-induced changes profoundly affect deltaic systems. This paper examines the evolution of the Sefidrud Delta, impacted by the Manjil Dam and sediment flushing operation (SFO), through a hybrid approach that observes the hydrological and morphological linkages of the fluvial system and the delta over seven decades. All changes in the delta were detected by analyzing numerous aerial photographs and satellite images. The construction of the Manjil Dam altered the delta’s morphotype from a river-dominated bird’s foot to a wave-dominated arcuate shape. Coastal lagoons were formed by the progradation of mouth bars, influenced by wave actions. An increase of 343% in the mean annual sediment load, due to the SFO, significantly accelerated these changes and reinitiated delta development. The Boujagh point bar expanded by 1.7 km2 between 1981 and 1990, ultimately causing the Sefidrud channel to migrate by 45?, along with a 2540-meter displacement of the river mouth. Sediment discharge increased by the flushing operation choked coastal lagoons. The sinusoidal trend in sediment load during the SFO transformed the delta into a fluvial and wave-dominated pointy cuspate shape. The sediment starvation induced by a sharp decrease in sediment load after 1998 resulted in 1.166 km2 of erosion. The effects of the dam construction and SFO on the Sefidrud deltaic system represent the Anthropocene in the southern Caspian Sea. We conclude that, the critical sediment demand to maintain delta is about 14 Mt/yr, while due to limiting the output of the Manjil Dam and construction of dam on the sefidrud main tributaries, only about 3.16 Mt/yr has been delivered since 1999. The continuation of current conditions will lead to severe erosion and the eventual disappearance of the delta. Repeating the SFO will result in further changes to the delta and cause environmental damage.
References
[1]
Amissah, G. J., Kiss, T., & Fiala, K. (2019). Active Point Bar Development and River Bank Erosion in the Incising Channel of the Lower Tisza River, Hungary. Landscape & Environment, 13, 13-28. https://doi.org/10.21120/le/13/1/2
[2]
Anthony, E. J. (2015). Wave Influence in the Construction, Shaping and Destruction of River Deltas: A Review. Marine Geology, 361, 53-78. https://doi.org/10.1016/j.margeo.2014.12.004
[3]
Arcangeli, E., & Ciabbari, P. (1994). Manjil Dam Rehabilitation by Resin Grouting and High-Capacity Anchors. International Water Power & Dam Construction, 46, 19-25.
[4]
Berberian, M., & King, G. C. P. (1981). Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 18, 210-265. https://doi.org/10.1139/e81-019
[5]
Bergillos, R. J., & Sanchez, M. (2017). Assessing and Mitigating the Landscape Effects of River Damming on the Guadalfeo River Delta, Southern Spain. Landscape and Urban Planning, 165, 117-129. https://doi.org/10.1016/j.landurbplan.2017.05.002
[6]
Bergillos, R. J., Rodríguez-Delgado, C., López-Ruiz, A., Millares, A., Ortega-Sánchez, M., & Losada, M. A. (2015). Recent Human-Induced Coastal Changes in the Guadalfeo River Deltaic System (Southern Spain). In Proceedings of the 36th IAHR-International Association for Hydro-Environment Engineering and Research World Congress.
[7]
Best, J. (2019). Anthropogenic Stresses on the World’s Big Rivers. Nature Geoscience, 12, 7-21. https://doi.org/10.1038/s41561-018-0262-x
[8]
Blum, M. D., & Roberts, H. H. (2012). The Mississippi Delta Region: Past, Present, and Future. Annual Review of Earth and Planetary Sciences, 40, 655-683. https://doi.org/10.1146/annurev-earth-042711-105248
[9]
Boyd, R., Dalrymple, R., & Zaitlin, B. A. (1992). Classification of Clastic Coastal Depositional Environments. Sedimentary Geology, 80, 139-150. https://doi.org/10.1016/0037-0738(92)90037-r
[10]
Brandt, S. A. (2000). A Review of Reservoir Desolation. International Journal of Sediment Research, 15, 321-342.
[11]
Broussard, M. L. S. (1976). Deltas; Models for Exploration. Houston Geological Society.
[12]
Brown, C. B. (1944). The Control of Reservoir Silting (No. 521). US Department of Agriculture.
[13]
Bussi, G., Darby, S. E., Whitehead, P. G., Jin, L., Dadson, S. J., Voepel, H. E. et al. (2021). Impact of Dams and Climate Change on Suspended Sediment Flux to the Mekong Delta. Science of the Total Environment, 755, Article 142468. https://doi.org/10.1016/j.scitotenv.2020.142468
[14]
Cakir, H. I., Khorram, S., & Nelson, S. A. C. (2006). Correspondence Analysis for Detecting Land Cover Change. Remote Sensing of Environment, 102, 306-317. https://doi.org/10.1016/j.rse.2006.02.023
[15]
Caldwell, R. L., Edmonds, D. A., Baumgardner, S., Paola, C., Roy, S., & Nienhuis, J. H. (2019). A Global Delta Dataset and the Environmental Variables That Predict Delta Formation on Marine Coastlines. Earth Surface Dynamics, 7, 773-787. https://doi.org/10.5194/esurf-7-773-2019
[16]
Chen, X., Zheng, Y., Wang, L., Han, F., Zeng, Z., Xu, P. et al. (2022). Climate Change May Neutralize the Sediment Starvation in Mega Deltas Caused by Hydropower Dams. Sustainable Horizons, 4, Article 100041. https://doi.org/10.1016/j.horiz.2022.100041
[17]
Coleman, J. M., & Wright, L. D. (1976). Modern River Deltas; Variability of Processes and Sand Bodies. In: M. L. S. Broussard (Ed.), Deltas, Models for Exploration (pp. 99-150). Houston Geological Society.
[18]
Cracknell, A. P. (1999). Remote Sensing Techniques in Estuaries and Coastal Zones an Update. International Journal of Remote Sensing, 20, 485-496. https://doi.org/10.1080/014311699213280
[19]
Dahal, S., Crosato, A., Omer, A. Y. A., & Lee, A. A. (2021). Validation of Model-Based Optimization of Reservoir Sediment Releases by Dam Removal. Journal of Water Resources Planning and Management, 147, Article 04021033. https://doi.org/10.1061/(asce)wr.1943-5452.0001388
[20]
Dietrich, W. E. (1987). Mechanics of Flow and Sediment Transport in River Bends. In K. S. Richards (Ed.), River Channels: Environment and Process (pp. 179-227). Blackwell.
[21]
Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J., Hinderer, J. et al. (2010). GPS and Gravity Constraints on Continental Deformation in the Alborz Mountain Range, Iran. Geophysical Journal International, 183, 1287-1301. https://doi.org/10.1111/j.1365-246x.2010.04811.x
[22]
Duck, R. W., & da Silva, J. F. (2012). Coastal Lagoons and Their Evolution: A Hydromorphological Perspective. Estuarine, Coastal and Shelf Science, 110, 2-14. https://doi.org/10.1016/j.ecss.2012.03.007
[23]
Dunn, F. E., Darby, S. E., Nicholls, R. J., Cohen, S., Zarfl, C., & Fekete, B. M. (2019). Projections of Declining Fluvial Sediment Delivery to Major Deltas Worldwide in Response to Climate Change and Anthropogenic Stress. Environmental Research Letters, 14, Article 084034. https://doi.org/10.1088/1748-9326/ab304e
[24]
Emamgholizadeh, S., Borojeni, H. S., & Bina, M. (2005). The Flushing of the Sediments Near the Power Intakes in the Dez Reservoir. River Basin Management III 621. WIT Transactions on Ecology and the Environment, 83, 621-630.
[25]
Ericson, J., Vorosmarty, C., Dingman, S., Ward, L., & Meybeck, M. (2006). Effective Sea-Level Rise and Deltas: Causes of Change and Human Dimension Implications. Global and Planetary Change, 50, 63-82. https://doi.org/10.1016/j.gloplacha.2005.07.004
[26]
Espa, P., Brignoli, M. L., Crosa, G., Gentili, G., & Quadroni, S. (2016). Controlled Sediment Flushing at the Cancano Reservoir (Italian Alps): Management of the Operation and Downstream Environmental Impact. Journal of Environmental Management, 182, 1-12. https://doi.org/10.1016/j.jenvman.2016.07.021
[27]
EU4Environment, Water and Data in Eastern Partner Countries (2023). Bringing Back Nature in theKura Delta (Azerbaijan) Phaze 1—Concept Note.
[28]
Eyvazi, J., Yamani, M., & Khoshraftar, R. (2005). Evolution of Sefidrud Delta during Quaternary. Geographical Researches, 53, 99-120.
[29]
Fan, D. (2018). Has Anthropogenic Agent Already Created a New Epoch of Anthropocene? In 10000 Selected Problems in Sciences: Ocean Science (pp. 509-513). Science China Press.
[30]
Fan, D., Nguyen, D. V., Su, J., Bui, V. V., & Tran, D. L. (2019). Coastal Morphological Changes in the Red River Delta under Increasing Natural and Anthropic Stresses. Anthropocene Coasts, 2, 51-71. https://doi.org/10.1139/anc-2018-0022
[31]
Fan, D., Wu, Y., Zhang, Y., Burr, G., Huo, M., & Li, J. (2017). South Flank of the Yangtze Delta: Past, Present, and Future. Marine Geology, 392, 78-93. https://doi.org/10.1016/j.margeo.2017.08.015
[32]
Farley Nicholls, J., Toumi, R., & Budgell, W. P. (2012). Inertial Currents in the Caspian Sea. Geophysical Research Letters, 39, L18603. https://doi.org/10.1029/2012gl052989
[33]
Fathi, M. H., Nazmfar, H., Sarmasti, N., & Khaliji, M. A. (2013). Monitoring the Changes of Sefidroud Delta by Processing Multi-Spectral and Multi-Temporal Satellite Images. In Second International Conference on Sensors and Models in Mapping and Remote Sensing (pp. 1-13). University of Tehran. https://smpr2013.ut.ac.ir/
[34]
Ghanavati, E., Firouzabadi, P. Z., Jangi, A. A., & Khosravi, S. (2008). Monitoring Geomorphologic Changes Using Landsat TM and ETM+ Data in the Hendijan River Delta, Southwest Iran. International Journal of Remote Sensing, 29, 945-959. https://doi.org/10.1080/01431160701294679
[35]
Giosan, L., Syvitski, J., Constantinescu, S., & Day, J. (2014). Climate Change: Protect the World's Deltas. Nature, 516, 31-33. https://doi.org/10.1038/516031a
[36]
Grimardias, D., Guillard, J., & Cattanéo, F. (2017). Drawdown Flushing of a Hydroelectric Reservoir on the Rhône River: Impacts on the Fish Community and Implications for the Sediment Management. Journal of Environmental Management, 197, 239-249. https://doi.org/10.1016/j.jenvman.2017.03.096
[37]
Gulbabazadeh, T. (1997). Sedimentological Investigations of Lake Anzali and Surrounding Quaternary Deposits. PhD Thesis. Ankara University.
[38]
Haghani, S., Leroy, S. A. G., Wesselingh, F. P., & Rose, N. L. (2016). Rapid Evolution of Coastal Lagoons in Response to Human Interference under Rapid Sea Level Change: A South Caspian Sea Case Study. Quaternary International, 408, 93-112. https://doi.org/10.1016/j.quaint.2015.12.005
[39]
Haq, B., & Milliman, J. (2023). Perilous Future for River Deltas. GSA Today, 33, 4-12. https://doi.org/10.1130/gsatg566a.1
[40]
Hassanzadeh, Y. (1995). The Removal of Reservoir Sediment. Water International, 20, 151-154. https://doi.org/10.1080/02508069508686467
[41]
Hauer, C., Wagner, B., Aigner, J., Holzapfel, P., Flödl, P., Liedermann, M. et al. (2018). State of the Art, Shortcomings and Future Challenges for a Sustainable Sediment Management in Hydropower: A Review. Renewable and Sustainable Energy Reviews, 98, 40-55. https://doi.org/10.1016/j.rser.2018.08.031
[42]
Hood, W. G. (2010). Delta Distributary Dynamics in the Skagit River Delta (Washington, USA): Extending, Testing, and Applying Avulsion Theory in a Tidal System. Geomorphology, 123, 154-164. https://doi.org/10.1016/j.geomorph.2010.07.007
[43]
Kazancı, N., & Gulbabazadeh, T. (2013). Sefidrud Delta and Quaternary Evolution of the Southern Caspian Lowland, Iran. Marine and Petroleum Geology, 44, 120-139. https://doi.org/10.1016/j.marpetgeo.2013.03.006
[44]
Kemp, P., Sear, D., Collins, A., Naden, P., & Jones, I. (2011). The Impacts of Fine Sediment on Riverine Fish. Hydrological Processes, 25, 1800-1821. https://doi.org/10.1002/hyp.7940
[45]
Khabbaz-Nia, A. R., & Sadeghi, A. (2004). Rasht Quadrangle. Geological Map of Iran, 1:100,000 Series, Sheet No 5964. Geological Survey and Mineral Exploration, Iran.
[46]
Khoshraftar, R. (2005). Geomorphological Evolution of Kiashahr Lagoon Using Aerial Photographs Satellite Images and GPS. In Proceedings of the 9th International Conference on Environmental Science and Technology, 1-3 September 2005, Rhodes Island, 381-387.
[47]
Khosronejhad, A. (2009). Optimization of the Sefid-Roud Dam Desiltation Process Using a Sophisticated One-Dimensional Numerical Model. International Journal of Sediment Research, 24, 189-200. https://doi.org/10.1016/s1001-6279(09)60026-3
[48]
Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J. et al. (2014b). Sustainable Sediment Management in Reservoirs and Regulated Rivers: Experiences from Five Continents. Earth’s Future, 2, 256-280. https://doi.org/10.1002/2013ef000184
[49]
Kondolf, G. M., Rubin, Z. K., & Minear, J. T. (2014a). Dams on the Mekong: Cumulative Sediment Starvation. Water Resources Research, 50, 5158-5169. https://doi.org/10.1002/2013wr014651
[50]
Kousari, S. (1986). Evolution of Sefidrud Delta. Development in Geological Education, 1, 31-41.
[51]
Kousari, S. (1992). Development of the Sefidrud Delta, Northern Iran. 29th International Geological Congress, Kyoto, 317.
[52]
Krasnozhan, G. F., Lahijani, H., & Voropaev, V. (1999). Evolution of the Delta of the Sefidrud and Iranian Coast from Space Imagery. Mapping Science and Remote Sensing, 1, 105-111.
[53]
Lahijani, H. A. K., Rahimpour-Bonab, H., Tavakoli, V., & Hosseindoost, M. (2009). Evidence for Late Holocene Highstands in Central Guilan–east Mazanderan, South Caspian Coast, Iran. Quaternary International, 197, 55-71. https://doi.org/10.1016/j.quaint.2007.10.005
[54]
Lahijani, H., Leroy, S. A. G., Arpe, K., & Crétaux, J. F. (2023). Caspian Sea Level Changes during Instrumental Period, Its Impact and Forecast: A Review. Earth-Science Reviews, 241, Article 104428. https://doi.org/10.1016/j.earscirev.2023.104428
[55]
Lahijani, H., Tavakoli, V., & Amini, A. H. (2008). South Caspian River Mouth Configuration under Human Impact and Sea Level Fluctuations. Environmental Sciences, 5, 65-86.
[56]
Lai, Y. G., Huang, J., & Greimann, B. P. (2024). Hydraulic Flushing of Sediment in Reservoirs: Best Practices of Numerical Modeling. Fluids, 9, Article 38. https://doi.org/10.3390/fluids9020038
[57]
Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C., & Haruyama, S. (2007). The Combined Impact on the Flooding in Vietnam’s Mekong River Delta of Local Man-Made Structures, Sea Level Rise, and Dams Upstream in the River Catchment. Estuarine, Coastal and Shelf Science, 71, 110-116. https://doi.org/10.1016/j.ecss.2006.08.021
[58]
Lepage, H., Launay, M., Le Coz, J., Angot, H., Miège, C., Gairoard, S. et al. (2020). Impact of Dam Flushing Operations on Sediment Dynamics and Quality in the Upper Rhône River, France. Journal of Environmental Management, 255, Article 109886. https://doi.org/10.1016/j.jenvman.2019.109886
[59]
Li, D., Gao, W., Shao, D., Amenuvor, M., Tong, Y., & Cui, B. (2021). A Tale of Two Deltas: Dam-Induced Hydro-Morphological Evolution of the Volta River Delta (Ghana) and Yellow River Delta (China). Water, 13, Article 3198. https://doi.org/10.3390/w13223198
[60]
Li, X., Liu, J. P., Saito, Y., & Nguyen, V. L. (2017). Recent Evolution of the Mekong Delta and the Impacts of Dams. Earth-Science Reviews, 175, 1-17. https://doi.org/10.1016/j.earscirev.2017.10.008
[61]
Ly, C. K. (1980). The Role of the Akosombo Dam on the Volta River in Causing Coastal Erosion in Central and Eastern Ghana (West Africa). Marine Geology, 37, 323-332. https://doi.org/10.1016/0025-3227(80)90108-5
[62]
Matos, T., Martins, M. S., Henriques, R., & Goncalves, L. M. (2024). Design of a Sensor to Estimate Suspended Sediment Transport in Situ Using the Measurements of Water Velocity, Suspended Sediment Concentration and Depth. Journal of Environmental Management, 365, Article 121660. https://doi.org/10.1016/j.jenvman.2024.121660
[63]
McFeeters, S. K. (1996). The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. International Journal of Remote Sensing, 17, 1425-1432. https://doi.org/10.1080/01431169608948714
[64]
Meybeck, M., Laroche, L., Dürr, H. H., & Syvitski, J. P. M. (2003). Global Variability of Daily Total Suspended Solids and Their Fluxes in Rivers. Global and Planetary Change, 39, 65-93. https://doi.org/10.1016/s0921-8181(03)00018-3
[65]
Morris, G. L., & Fan, J. (1998). Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use. McGraw Hill Professional.
[66]
Mukhopadhyay, A., Ghosh, P., Chanda, A., Ghosh, A., Ghosh, S., Das, S. et al. (2018). Threats to Coastal Communities of Mahanadi Delta Due to Imminent Consequences of Erosion—Present and near Future. Science of the Total Environment, 637, 717-729. https://doi.org/10.1016/j.scitotenv.2018.05.076
[67]
Munasinghe, D., Cohen, S., & Gadiraju., K. (2020). A Review of Satellite Remote Sensing Techniques of River Delta Morphology Change. https://doi.org/10.31223/osf.io/x86em
[68]
Nazari, H., Omrani, J., Shahidi, A., Salamati, R., & Mousavi, A. (2004). Geological Map of Bandar-e-anzaliQuandrangle at 1:100 000 Scale. Sheet No. D3e5864. Geological Survey of Iran.
[69]
Nichols, M. M., & Boon, J. D. (1994). Chapter 7 Sediment Transport Processes in Coastal Lagoons. In Elsevier Oceanography Series (pp. 157-219). Elsevier. https://doi.org/10.1016/s0422-9894(08)70012-6
[70]
Nienhuis, J. H., & van de Wal, R. S. W. (2021). Projections of Global Delta Land Loss from Sea-Level Rise in the 21st Century. Geophysical Research Letters, 48, e2021GL093368. https://doi.org/10.1029/2021gl093368
[71]
Nienhuis, J. H., Kim, W., Milne, G. A., Quock, M., Slangen, A. B. A., & Törnqvist, T. E. (2023). River Deltas and Sea-Level Rise. Annual Review of Earth and Planetary Sciences, 51, 79-104. https://doi.org/10.1146/annurev-earth-031621-093732
[72]
Oertel, G. F., Kraft, J. C., Kearney, M. S., & Woo, H. J. (1992). A Rational Theory for Barrier-Lagoon Development. In Quaternary Coasts of the United States (pp. 77-87). Society for Sedimentary Geology. https://doi.org/10.2110/pec.92.48.0077
[73]
Orton, G. J., & Reading, H. G. (1993). Variability of Deltaic Processes in Terms of Sediment Supply, with Particular Emphasis on Grain Size. Sedimentology, 40, 475-512. https://doi.org/10.1111/j.1365-3091.1993.tb01347.x
[74]
Ouma, Y. O., & Tateishi, R. (2007). Lake Water Body Mapping with Multiresolution Based Image Analysis from Medium-Resolution Satellite Imagery. International Journal of Environmental Studies, 64, 357-379. https://doi.org/10.1080/00207230500196856
[75]
Overeem, I. (2005). Three-Dimensional Numerical Modeling of Deltas. Special Publications of SEPM.
[76]
Panthi, M., Lee, A. A., Dahal, S., Omer, A., Franca, M. J., & Crosato, A. (2022). Effects of Sediment Flushing Operations versus Natural Floods on Chinook Salmon Survival. Scientific Reports, 12, Article No. 15354. https://doi.org/10.1038/s41598-022-19294-2
[77]
Pourafrasyabi, M., & Ramezanpour, Z. (2014). Phytoplankton as Bio-Indicator of Water Quality in Sefid Rud River—Iran (South Caspian Sea). Caspian Journal of Environmental Sciences, 12, 31-40.
[78]
Quang, N. H., Thang, H. N., An, N. V., & Luan, N. T. (2023). Delta Lobe Development in Response to Changing Fluvial Sediment Supply by the Second Largest River in Vietnam. Catena, 231, Article 107314. https://doi.org/10.1016/j.catena.2023.107314
[79]
Ramezani, Y., & Ghomeshi, M. (2011). Effect of Turbidity Currents on Sedimentation Process in Sefidroud Dam. Journal of Water and Soil, 25, 874-880.
[80]
Randle, T. J., Bountry, J. A., Ritchie, A., & Wille, K. (2015). Large-Scale Dam Removal on the Elwha River, Washington, USA: Erosion of Reservoir Sediment. Geomorphology, 246, 709-728. https://doi.org/10.1016/j.geomorph.2014.12.045
[81]
Reyes, S. B., Diehl, R. M., & Wilcox, A. C. (2018). The Influence of a Vegetated Bar on Channel-Bend Flow Dynamics. Earth Surface Dynamics, 6, 487-503. https://doi.org/10.5194/esurf-6-487-2018
[82]
Sarvar, J. (2008). The Change of Sefidrud Channel in Its Delta Area between 1981-2008. Sarzamin Geographical Journal,20, 83-106.
[83]
Somoza, L., & Santalla, I. (2014). Geology and Geomorphological Evolution of the Ebro River Delta. In World Geomorphological Landscapes (pp. 213-227). Springer. https://doi.org/10.1007/978-94-017-8628-7_18
[84]
Sorour, J. (2009). The Shift of Sefidrud River Channel on Its Delta (from 2004 to 2009). Sarzamin Geographical Quarterly, 5, 83-105.
[85]
Stanley, D. J., & Warne, A. G. (1997). Holocene Sea-Level Change and Early Human Utilization of Deltas. GSA Today, 7, 1-7.
[86]
Stanley, D. J., & Warne, A. G. (1998). Nile Delta in Its Destruction Phase. Journal of Coastal Research, 14, 794-825.
[87]
Syvitski, J. P. M., & Saito, Y. (2007). Morphodynamics of Deltas under the Influence of Humans. Global and Planetary Change, 57, 261-282. https://doi.org/10.1016/j.gloplacha.2006.12.001
[88]
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R. et al. (2009). Sinking Deltas Due to Human Activities. Nature Geoscience, 2, 681-686. https://doi.org/10.1038/ngeo629
[89]
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., & Green, P. (2005). Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science, 308, 376-380. https://doi.org/10.1126/science.1109454
[90]
Tamura, T., Saito, Y., Nguyen, V. L., Ta, T. K. O., Bateman, M. D., Matsumoto, D. et al. (2012). Origin and Evolution of Interdistributary Delta Plains; Insights from Mekong River Delta. Geology, 40, 303-306. https://doi.org/10.1130/g32717.1
[91]
Toorani, M., Kakroodi, A. A., Yamani, M., & Naderi Beni, A. (2021). Monitoring Shoreline Shift under Rapid Sea-Level Change on the Caspian Sea Observed over 60 Years of Satellite and Aerial Photo Records. Journal of Great Lakes Research, 47, 812-828. https://doi.org/10.1016/j.jglr.2021.02.006
[92]
Trincardi, F., Cattaneo, A., & Correeggiari, A. (2005). Mediterranean Prodelta Systems: Natural Evolution and Human Impact Investigated by Eurodelta. Oceanography, 17, 34-45. https://doi.org/10.5670/oceanog.2004.02
[93]
Van Asselen, S., Erkens, G., Stouthamer, E., Woolderink, H. A. G., Geeraert, R. E. E., & Hefting, M. M. (2018). The Relative Contribution of Peat Compaction and Oxidation to Subsidence in Built-Up Areas in the Rhine-Meuse Delta, the Netherlands. Science of the Total Environment, 636, 177-191. https://doi.org/10.1016/j.scitotenv.2018.04.141
[94]
Wang, H., Saito, Y., Zhang, Y., Bi, N., Sun, X., & Yang, Z. (2011). Recent Changes of Sediment Flux to the Western Pacific Ocean from Major Rivers in East and Southeast Asia. Earth-Science Reviews, 108, 80-100. https://doi.org/10.1016/j.earscirev.2011.06.003
[95]
Wang, H., Wu, X., Bi, N., Li, S., Yuan, P., Wang, A. et al. (2017). Impacts of the Dam-Orientated Water-Sediment Regulation Scheme on the Lower Reaches and Delta of the Yellow River (Huanghe): A Review. Global and Planetary Change, 157, 93-113. https://doi.org/10.1016/j.gloplacha.2017.08.005
[96]
Wang, H., Yang, Z., Saito, Y., Liu, J. P., Sun, X., & Wang, Y. (2007). Stepwise Decreases of the Huanghe (Yellow River) Sediment Load (1950–2005): Impacts of Climate Change and Human Activities. Global and Planetary Change, 57, 331-354. https://doi.org/10.1016/j.gloplacha.2007.01.003
[97]
Wen Shen, H. (2010). Flushing Sediment through Reservoirs. Journal of Hydraulic Research, 37, 743-757. https://doi.org/10.1080/00221689909498509
[98]
White, R. (2001). Evacuation of Sediments from Reservoirs. Thomas Telford Publishing. https://doi.org/10.1680/eosfr.29538
[99]
Xiong, H., Lu, B., Wang, Q., Zhang, Z., Zong, Y., Liao, W. et al. (2024). Mouth Bars’ Development along the West Pearl River Main Course. Catena, 245, Article 108337. https://doi.org/10.1016/j.catena.2024.108337
[100]
Xu, Z., Wu, S., Liu, M., Zhao, J., Chen, Z., Zhang, K. et al. (2021). Effects of Water Discharge on River-Dominated Delta Growth. Petroleum Science, 18, 1630-1649. https://doi.org/10.1016/j.petsci.2021.09.027
[101]
Yamani, M., & Kamrani-Dalir, H. (2011). The Effects of River-Bed Channel Changes on the Morphological Study of Rivers in Sefidrud Delta Area. Iran Geological Quarterly Journal, 4, 61-72.
[102]
Yamani, M., Moghimi, E., Motamed, A., Jafarbeglo, M., & Lorestani, G. (2013). Fast Shoreline Changes in Sefidrud Delta Using Intersects Analysis Methods. Physical Geography Research Quarterly, 84, 1-20.
[103]
Yang, S. L., Belkin, I. M., Belkina, A. I., Zhao, Q. Y., Zhu, J., & Ding, P. X. (2003). Delta Response to Decline in Sediment Supply from the Yangtze River: Evidence of the Recent Four Decades and Expectations for the Next Half-Century. Estuarine, Coastal and Shelf Science, 57, 689-699. https://doi.org/10.1016/s0272-7714(02)00409-2
[104]
Yang, S. L., Li, M., Dai, S. B., Liu, Z., Zhang, J., & Ding, P. X. (2006a). Drastic Decrease in Sediment Supply from the Yangtze River and Its Challenge to Coastal Wetland Management. Geophysical Research Letters, 33, Lo6408. https://doi.org/10.1029/2005gl025507
[105]
Yang, Z., Wang, H., Saito, Y., Milliman, J. D., Xu, K., Qiao, S. et al. (2006b). Dam Impacts on the Changjiang (Yangtze) River Sediment Discharge to the Sea: The Past 55 Years and after the Three Gorges Dam. Water Resources Research, 42, W04407. https://doi.org/10.1029/2005wr003970
[106]
Yulianto, F., Suwarsono, S., Maulana, T., & Khomarudin, M. R. (2019). The Dynamics of Shoreline Change Analysis Based on the Integration of Remote Sensing and Geographic Information System (GIS) Techniques in Pekalongan Coastal Area, Central Java, Indonesia. Journal of Degraded and Mining Lands Management, 6, 1789-1782. https://doi.org/10.15243/jdmlm.2019.063.1789
[107]
Zaimes, G. N., Gounaridis, D., & Symenonakis, E. (2019). Assessing the Impact of Dams on Riparian and Deltaic Vegetation Using Remotely-Sensed Vegetation Indices and Random Forests Modelling. Ecological Indicators, 103, 630-641. https://doi.org/10.1016/j.ecolind.2019.04.047