全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical Isolate of Candida tropicalis from a Patient in North Carolina: Identification, Whole-Genome Sequence Analysis, and Anticandidal Activity of Ganoderma lucidum

DOI: 10.4236/ojmm.2025.151002, PP. 11-35

Keywords: Candida sp., Candida tropicalis, Mushroom Extracts, Germ Tube, Resistance, Clinical Isolates

Full-Text   Cite this paper   Add to My Lib

Abstract:

In North Carolina, candida infections are on the rise and pose a significant threat to human health in clinical settings. In addition, the rise of resistance to antifungal drugs has only heightened this concern. Importantly, misidentification of Candida spp. may result in underdiagnosis, patients getting the wrong treatment and incomplete infection prevention measures. The correct and rapid etiological identification of Candida infections is of paramount importance because it provides adequate therapy, reduces mortality, and controls outbreaks. Hence, this study aimed to identify Candida sp. up to species level of a clinical isolate from an infected patient treated in North Carolina using biochemical and molecular techniques. Due to the emergence of resistance, we explored whole genomic analysis to highlight polymorphisms that can impact candida resistance. Exploration for the effectiveness of bioactive compounds in natural products to treat Candida spp. resistant to present-day drugs could provide promising new treatment options for managing infected patients. Thus, this study also investigated anticandida activity of three solvent extracts of Ganoderma lucidum against the clinical isolate of Candida sp. The findings of this study provided evidence that Candida tropicalis MYA-3404 was the only strain present in the clinical isolate. The whole genome sequencing of C. tropicalis identified mutations in genes that most likely underscore drug resistance. All extracts from G. lucidum significantly (P < 0.05) inhibited the growth of C. tropicalis. Together, this work highlights the enormous potential of biochemical and molecular techniques in identifying clinical isolates of candida to species level and the use of bioactive compounds from extracts of G. lucidum as promising anticandidal agents. Further testing is needed to confirm the phenotypic expression of resistance.

References

[1]  Macias-Paz, I.U., Pérez-Hernández, S., Tavera-Tapia, A., Luna-Arias, J.P., Guerra-Cárdenas, J.E. and Reyna-Beltrán, E. (2023) Candida albicans the Main Opportunistic Pathogenic Fungus in Humans. Revista Argentina de Microbiología, 55, 189-198.
https://doi.org/10.1016/j.ram.2022.08.003

[2]  Acosta, J.A., León, M.F., Jarrin, N.D., Acosta, P.V., Herrera, M.V., Ruiz, S.P., et al. (2024) Invasive Candidiasis Due to Candida albicans and Its Treatment. In: Behzadi, P., Ed., Candida albicansEpidemiology and Treatment, IntechOpen, p. 23.
[3]  Ibe, C. and Pohl, C.H. (2024) Epidemiology and Drug Resistance among Candida Pathogens in Africa: Candida auris Could Now Be Leading the Pack. The Lancet Microbe, 2024, Article ID: 100996.
https://doi.org/10.1016/j.lanmic.2024.100996

[4]  Nugraha, A.P., Sibero, M.T., Farabi, K., Surboyo, M.D.C., Ernawati, D.S. and Ahmad Noor, T.N.E.b.T. (2024) Marine Ascomycetes Extract Antifungal Susceptibility against Candida Spp. Isolates from Oral Candidiasis HIV/AIDS Patient: An in Vitro Study. European Journal of Dentistry, 18, 624-631.
https://doi.org/10.1055/s-0043-1768466

[5]  Ibanes-Gutiérrez, C., Espinosa-Atri, A. and Carbajal-César, A.C. (2024) A Review of Healthcare-Associated Fungal Outbreaks in Children. Current Fungal Infection Reports, 18, 77-87.
https://doi.org/10.1007/s12281-024-00491-7

[6]  Weber, D.J., Rutala, W.A. and Sickbert-Bennett, E. (2023) Emerging Infectious Diseases, Focus on Infection Prevention, Environmental Survival and Germicide Susceptibility: SARS-CoV-2, Mpox, and Candida auris. American Journal of Infection Control, 51, A22-A34.
https://doi.org/10.1016/j.ajic.2023.02.006

[7]  Marinho, S.A., Teixeira, A.B., Santos, O.S., Cazanova, R.F., Ferreira, C.A.S., Cherubini, K., et al. (2010) Identification of Candida Spp. by Phenotypic Tests and PCR. Brazilian Journal of Microbiology, 41, 286-294.
https://doi.org/10.1590/s1517-83822010000200004

[8]  Regidor, P.A., Thamkhantho, M., Chayachinda, C. and Palacios, S. (2023) Miconazole for the Treatment of Vulvovaginal Candidiasis. in Vitro, in Vivo and Clinical Results. Review of the Literature. Journal of Obstetrics and Gynaecology, 43, Article ID: 2195001.
https://doi.org/10.1080/01443615.2023.2195001

[9]  Macedo, D., Berrio, I., Escandon, P., Gamarra, S. and Garcia‐Effron, G. (2024) Mechanism of Azole Resistance in Candida vulturna, an Emerging Multidrug Resistant Pathogen Related with Candida haeumulonii and Candida auris. Mycoses, 67, e13757.
https://doi.org/10.1111/myc.13757

[10]  Shen, H., Shao, S., Chen, J. and Zhou, T. (2017) Antimicrobials from Mushrooms for Assuring Food Safety. Comprehensive Reviews in Food Science and Food Safety, 16, 316-329.
https://doi.org/10.1111/1541-4337.12255

[11]  Waktola, G. and Temesgen, T. (2020) Pharmacological Activities of Oyster Mushroom (Pleurotus ostreatus). Novel Research in Microbiology Journal, 4, 688-695.
[12]  Xhensila, L., Törős, G., Hajdu, P., El-Ramady, H., Peles, F. and Prokisch, J. (2023) Mushroom Cultivation Systems: Exploring Antimicrobial and Prebiotic Benefits. Environment, Biodiversity and Soil Security, 7, 101-120.
https://doi.org/10.21608/jenvbs.2023.207745.1216

[13]  Du, J., Jin, S., Zhang, Y., Qiu, W., Dong, Y., Liu, Y., et al. (2024) In Vitro and in Vivo Inhibitory Effects of the Sanghuang Mushroom Extracts against Candida albicans. Future Microbiology, 19, 983-996.
[14]  Ewunkem, A.J., Tshimanga, I., Samson, B., Justice, B. and Singh, D.K. (2024) Invitro Evaluation of Antimicrobial Activity of Aqueous Extracts of Reishi Mushroom (Ganoderma lucidum) against a Select Gram Positive and Negative Bacteria. Scientific Journal of Biology & Life Sciences, 3, p. 25.
[15]  Łysakowska, P., Sobota, A. and Wirkijowska, A. (2023) Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production—A Review. Molecules, 28, Article No. 5393.
https://doi.org/10.3390/molecules28145393

[16]  Ahmad, M.F., A. Alsayegh, A., Ahmad, F.A., Akhtar, M.S., Alavudeen, S.S., Bantun, F., et al. (2024) Ganoderma lucidum: Insight into Antimicrobial and Antioxidant Properties with Development of Secondary Metabolites. Heliyon, 10, e25607.
https://doi.org/10.1016/j.heliyon.2024.e25607

[17]  Atila, F., Ogutcu, H., Bilginoglu, E., Kazankaya, A., Kumar, P. and Fayssal, S.A. (2023) Effect of Phenolic-Rich Forest and Agri-Food Wastes on Yield, Antioxidant, and Antimicrobial Activities of Ganoderma lucidum. Biomass Conversion and Biorefinery, 14, 25811-25821.
https://doi.org/10.1007/s13399-023-04708-6

[18]  Zhang, H., Zhang, J., Liu, Y. and Tang, C. (2023) Recent Advances in the Preparation, Structure, and Biological Activities of Β-Glucan from Ganoderma Species: A Review. Foods, 12, Article No. 2975.
https://doi.org/10.3390/foods12152975

[19]  Akamu, E., Merrills, L., Williams, Z., Justice, B., Iloghalu, U., Williams, V., et al. (2024) In Vitro Antimicrobial Efficacy Assessment of Ethanolic, Aqueous, and Dual Solvent Extracts of Mushroom Ganoderma lucidum: Genomic and Morphological Analysis. Antibiotics, 13, Article No. 1109.
https://doi.org/10.3390/antibiotics13121109

[20]  Jiang, J.Y., et al. (2017) Overview of Ganoderma Sinense Polysaccharide—An Adjunctive Drug Used during Concurrent Chemo/Radiation Therapy for Cancer Treatment in China. Biomedicine & Pharmacotherapy, 96, 865-870.
[21]  Guo, J., Yang, L., Ma, Q., Ge, Y., Kong, F., Zhou, L., et al. (2021) Triterpenoids and Meroterpenoids with Α-Glucosidase Inhibitory Activities from the Fruiting Bodies of Ganoderma Australe. Bioorganic Chemistry, 117, Article ID: 105448.
https://doi.org/10.1016/j.bioorg.2021.105448

[22]  Vazirian, M., Faramarzi, M.A., Ebrahimi, S.E.S., Esfahani, H.R.M., Samadi, N., Hosseini, S.A., et al. (2014) Antimicrobial Effect of the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) and Its Main Compounds. International Journal of Medicinal Mushrooms, 16, 77-84.
https://doi.org/10.1615/intjmedmushr.v16.i1.70

[23]  Bhardwaj, A., et al. (2017) Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), Inhibits Candida Biofilms: A Metabolomic Approach. International Journal of Medicinal Mushrooms, 19, 685-696.
[24]  Gebreyohannes, G., Nyerere, A., Bii, C. and Berhe Sbhatu, D. (2019) Determination of Antimicrobial Activity of Extracts of Indigenous Wild Mushrooms against Pathogenic Organisms. Evidence-Based Complementary and Alternative Medicine, 2019, Article ID: 6212673.
https://doi.org/10.1155/2019/6212673

[25]  Wood, D.E. and Salzberg, S.L. (2014) Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments. Genome Biology, 15, R46.
https://doi.org/10.1186/gb-2014-15-3-r46

[26]  Deatherage, D.E. and Barrick, J.E. (2014) Identification of Mutations in Laboratory-Evolved Microbes from Next-Generation Sequencing Data Using Breseq. In: Sun, L.H. and Shou, W.Y., Eds., Engineering and Analyzing Multicellular Systems: Methods and Protocols, Springer, 165-188.
https://doi.org/10.1007/978-1-4939-0554-6_12

[27]  Magalhães, Y.C., Bomfim, M.R.Q., Melônio, L.C., Ribeiro, P.C.S., Cosme, L.M., Rhoden, C.R., et al. (2015) Clinical Significance of the Isolation of Candida Species from Hospitalized Patients. Brazilian Journal of Microbiology, 46, 117-123.
https://doi.org/10.1590/s1517-838246120120296

[28]  de Sousa, L.V.N.F., Santos, V.L., de Souza Monteiro, A., Dias-Souza, M.V., Marques, S.G., de Faria, E.S., et al. (2016) Isolation and Identification of Candida Species in Patients with Orogastric Cancer: Susceptibility to Antifungal Drugs, Attributes of Virulence in Vitro and Immune Response Phenotype. BMC Infectious Diseases, 16, Article No. 86.
https://doi.org/10.1186/s12879-016-1431-4

[29]  Buschelman, B., Jones, R.N., Pfaller, M.A., Koontz, F.P. and Doern, G.V. (1999) Colony Morphology of Candida Spp. as a Guide to Species Identification. Diagnostic Microbiology and Infectious Disease, 35, 89-91.
https://doi.org/10.1016/s0732-8893(99)00051-6

[30]  Fidel, P.L., Vazquez, J.A. and Sobel, J.D. (1999) Candida glabrata: Review of Epidemiology, Pathogenesis, and Clinical Disease with Comparison to C. albicans. Clinical Microbiology Reviews, 12, 80-96.
https://doi.org/10.1128/cmr.12.1.80

[31]  Pristov, K.E. and Ghannoum, M.A. (2019) Resistance of Candida to Azoles and Echinocandins Worldwide. Clinical Microbiology and Infection, 25, 792-798.
https://doi.org/10.1016/j.cmi.2019.03.028

[32]  Alburquenque, C., Amaro, J., Fuentes, M., Falconer, M.A., Moreno, C., Covarrubias, C., et al. (2018) Protective Effect of Inactivated Blastoconidia in Keratinocytes and Human Reconstituted Epithelium against C. albicans Infection. Medical Mycology, 57, 457-467.
https://doi.org/10.1093/mmy/myy068

[33]  Ha, K.C. and White, T.C. (1999) Effects of Azole Antifungal Drugs on the Transition from Yeast Cells to Hyphae in Susceptible and Resistant Isolates of the Pathogenic Yeast Candida albicans. Antimicrobial Agents and Chemotherapy, 43, 763-768.
https://doi.org/10.1128/aac.43.4.763

[34]  Lewis, R.E., Viale, P. and Kontoyiannis, D.P. (2012) The Potential Impact of Antifungal Drug Resistance Mechanisms on the Host Immune Response to Candida. Virulence, 3, 368-376.
https://doi.org/10.4161/viru.20746

[35]  Schillig, R. and Morschhäuser, J. (2013) Analysis of a Fungus‐Specific Transcription Factor Family, the Candida albicans Zinc Cluster Proteins, by Artificial Activation. Molecular Microbiology, 89, 1003-1017.
https://doi.org/10.1111/mmi.12327

[36]  Chen, L.H., et al. (2017) A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata. PLOS ONE, 12, e0169103.
[37]  Pantazi, A., Quintanilla, A., Hari, P., Tarrats, N., Parasyraki, E., Dix, F.L., et al. (2019) Inhibition of the 60S Ribosome Biogenesis Gtpase LSG1 Causes Endoplasmic Reticular Disruption and Cellular Senescence. Aging Cell, 18, e12981.
https://doi.org/10.1111/acel.12981

[38]  Drew, D., North, R.A., Nagarathinam, K. and Tanabe, M. (2021) Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chemical Reviews, 121, 5289-5335.
https://doi.org/10.1021/acs.chemrev.0c00983

[39]  Dörner, K., Ruggeri, C., Zemp, I. and Kutay, U. (2023) Ribosome Biogenesis Factors—From Names to Functions. The EMBO Journal, 42, e112699.
https://doi.org/10.15252/embj.2022112699

[40]  Morschhäuser, J. (2024) Adaptation of Candida albicans to Specific Host Environments by Gain-of-Function Mutations in Transcription Factors. PLOS Pathogens, 20, e1012643.
https://doi.org/10.1371/journal.ppat.1012643

[41]  Tsay, S.V., Mu, Y., Williams, S., Epson, E., Nadle, J., Bamberg, W.M., et al. (2020) Burden of Candidemia in the United States, 2017. Clinical Infectious Diseases, 71, e449-e453.
https://doi.org/10.1093/cid/ciaa193

[42]  Shi, W., Tanaka, K.S.E., Crother, T.R., Taylor, M.W., Almo, S.C. and Schramm, V.L. (2001) Structural Analysis of Adenine Phosphoribosyltransferase from Saccharomyces cerevisiae. Biochemistry, 40, 10800-10809.
https://doi.org/10.1021/bi010465h

[43]  Huang, W., Hong, S., Tang, G., Lu, Y. and Wang, C. (2019) Unveiling the Function and Regulation Control of the DUF3129 Family Proteins in Fungal Infection of Hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, Article ID: 20180321.
https://doi.org/10.1098/rstb.2018.0321

[44]  Arya, M., Srinivasan, M. and Rajasekharan, R. (2017) Human Alpha Beta Hydrolase Domain Containing Protein 11 and Its Yeast Homolog Are Lipid Hydrolases. Biochemical and Biophysical Research Communications, 487, 875-880.
https://doi.org/10.1016/j.bbrc.2017.04.145

[45]  Hon, T., Lee, H.C., Hu, Z., Iyer, V.R. and Zhang, L. (2005) The Heme Activator Protein Hap1 Represses Transcription by a Heme-Independent Mechanism in Saccharomyces Cerevisiae. Genetics, 169, 1343-1352.
https://doi.org/10.1534/genetics.104.037143

[46]  Andrawes, N., Weissman, Z., Pinsky, M., Moshe, S., Berman, J. and Kornitzer, D. (2022) Regulation of Heme Utilization and Homeostasis in Candida albicans. PLOS Genetics, 18, e1010390.
https://doi.org/10.1371/journal.pgen.1010390

[47]  Daignan-Fornier, B. and Pinson, B. (2019) Yeast to Study Human Purine Metabolism Diseases. Cells, 8, Article No. 67.
https://doi.org/10.3390/cells8010067

[48]  Bommisetti, P. and Bandarian, V. (2023) Insights into the Mechanism of Installation of 5-Carboxymethylaminomethyl Uridine Hypermodification by tRNA-Modifying Enzymes Mnme and Mnmg. Journal of the American Chemical Society, 145, 26947-26961.
https://doi.org/10.1021/jacs.3c10182

[49]  Jin, S., Chen, X., Yang, J. and Ding, J. (2023) Lactate Dehydrogenase D Is a General Dehydrogenase for D-2-Hydroxyacids and Is Associated with D-Lactic Acidosis. Nature Communications, 14, Article No. 6638.
https://doi.org/10.1038/s41467-023-42456-3

[50]  Niegowski, D. and Eshaghi, S. (2007) The Cora Family: Structure and Function Revisited. Cellular and Molecular Life Sciences, 64, 2564-2574.
https://doi.org/10.1007/s00018-007-7174-z

[51]  Bing, J., Guan, Z., Zheng, T., Ennis, C.L., Nobile, C.J., Chen, C., et al. (2024) Rapid Evolution of an Adaptive Multicellular Morphology of Candida auris during Systemic Infection. Nature Communications, 15, Article No. 2381.
https://doi.org/10.1038/s41467-024-46786-8

[52]  Du, H., Bing, J., Hu, T., Ennis, C.L., Nobile, C.J. and Huang, G. (2020) Candida auris: Epidemiology, Biology, Antifungal Resistance, and Virulence. PLOS Pathogens, 16, e1008921.
https://doi.org/10.1371/journal.ppat.1008921

[53]  Chowdhary, A., Jain, K. and Chauhan, N. (2023) Candida auris Genetics and Emergence. Annual Review of Microbiology, 77, 583-602.
https://doi.org/10.1146/annurev-micro-032521-015858

[54]  Rahman, M.M., Hunter, H.N., Prova, S., Verma, V., Qamar, A. and Golemi-Kotra, D. (2016) The Staphylococcus Aureus Methicillin Resistance Factor Fmta Is a D-Amino Esterase That Acts on Teichoic Acids. mBio, 7, pp. 10-1128.
https://doi.org/10.1128/mbio.02070-15

[55]  Neuhaus, F.C. and Baddiley, J. (2003) A Continuum of Anionic Charge: Structures and Functions of D-Alanyl-Teichoic Acids in Gram-Positive Bacteria. Microbiology and Molecular Biology Reviews, 67, 686-723.
https://doi.org/10.1128/mmbr.67.4.686-723.2003

[56]  Razew, A., Schwarz, J., Mitkowski, P., Sabala, I. and Kaus-Drobek, M. (2022) One Fold, Many Functions—m23 Family of Peptidoglycan Hydrolases. Frontiers in Microbiology, 13, Article ID: 1036964.
https://doi.org/10.3389/fmicb.2022.1036964

[57]  Karzai, A.W. (1999) Smpb, a Unique RNA-Binding Protein Essential for the Peptide-Tagging Activity of SsrA (tmRNA). The EMBO Journal, 18, 3793-3799.
https://doi.org/10.1093/emboj/18.13.3793

[58]  White, H.E., Sherman, M.B., Brasilès, S., Jacquet, E., Seavers, P., Tavares, P., et al. (2012) Capsid Structure and Its Stability at the Late Stages of Bacteriophage SPP1 Assembly. Journal of Virology, 86, 6768-6777.
https://doi.org/10.1128/jvi.00412-12

[59]  Allison, D.L., Willems, H.M.E., Jayatilake, J.A.M.S., Bruno, V.M., Peters, B.M. and Shirtliff, M.E. (2016) Candida-Bacteria Interactions: Their Impact on Human Disease. In: Virulence Mechanisms of Bacterial Pathogens, ASM Press, 103-136.
https://doi.org/10.1128/9781555819286.ch5

[60]  Bagg, J. and Silverwood, R.W. (1986) Coagglutination Reactions between Candida albicans and Oral Bacteria. Journal of Medical Microbiology, 22, 165-169.
https://doi.org/10.1099/00222615-22-2-165

[61]  Holmes, A.R., McNab, R. and Jenkinson, H.F. (1996) Candida albicans Binding to the Oral Bacterium Streptococcus gordonii Involves Multiple Adhesin-Receptor Interactions. Infection and Immunity, 64, 4680-4685.
https://doi.org/10.1128/iai.64.11.4680-4685.1996

[62]  Staniszewska, M., Bondaryk, M., Swoboda-Kopec, E., Siennicka, K., Sygitowicz, G. and Kurzatkowski, W. (2013) Candida albicans Morphologies Revealed by Scanning Electron Microscopy Analysis. Brazilian Journal of Microbiology, 44, 813-821.
https://doi.org/10.1590/s1517-83822013005000056

[63]  Kluzik, A., Tomczak, H., Nowicki, M., Grześkowiak, M. and Kusza, K. (2023) Scanning Electron Microscope Examination as an Alternative to Classical Microbiology in the Diagnostics of Catheter-Related Sepsis? International Journal of Environmental Research and Public Health, 20, Article No. 5028.
https://doi.org/10.3390/ijerph20065028

[64]  Ma, S., Li, H., Yan, C., Wang, D., Li, H., Xia, X., et al. (2014) Antagonistic Effect of Protein Extracts from Streptococcus Sanguinis on Pathogenic Bacteria and Fungi of the Oral Cavity. Experimental and Therapeutic Medicine, 7, 1486-1494.
https://doi.org/10.3892/etm.2014.1618

[65]  Bougnoux, M., Tavanti, A., Bouchier, C., Gow, N.A.R., Magnier, A., Davidson, A.D., et al. (2003) Collaborative Consensus for Optimized Multilocus Sequence Typing of Candida albicans. Journal of Clinical Microbiology, 41, 5265-5266.
https://doi.org/10.1128/jcm.41.11.5265-5266.2003

[66]  Dodgson, A.R., Pujol, C., Denning, D.W., Soll, D.R. and Fox, A.J. (2003) Multilocus Sequence Typing of Candida glabrata Reveals Geographically Enrichedclades. Journal of Clinical Microbiology, 41, 5709-5717.
https://doi.org/10.1128/jcm.41.12.5709-5717.2003

[67]  Tavanti, A., Davidson, A.D., Johnson, E.M., Maiden, M.C.J., Shaw, D.J., Gow, N.A.R., et al. (2005) Multilocus Sequence Typing for Differentiation of Strains of Candida tropicalis. Journal of Clinical Microbiology, 43, 5593-5600.
https://doi.org/10.1128/jcm.43.11.5593-5600.2005

[68]  Jacobsen, M.D., Gow, N.A.R., Maiden, M.C.J., Shaw, D.J. and Odds, F.C. (2007) Strain Typing and Determination of Population Structure of Candida krusei by Multilocus Sequence Typing. Journal of Clinical Microbiology, 45, 317-323.
https://doi.org/10.1128/jcm.01549-06

[69]  Zuza-Alves, D.L., Silva-Rocha, W.P. and Chaves, G.M. (2017) An Update on Candida Tropicalis Based on Basic and Clinical Approaches. Frontiers in Microbiology, 8, Article No. 1927.
https://doi.org/10.3389/fmicb.2017.01927

[70]  Fernández-Ruiz, M., Puig-Asensio, M., Guinea, J., Almirante, B., Padilla, B., Almela, M., et al. (2015) Candida Tropicalis Bloodstream Infection: Incidence, Risk Factors and Outcome in a Population-Based Surveillance. Journal of Infection, 71, 385-394.
https://doi.org/10.1016/j.jinf.2015.05.009

[71]  O’Brien, C.E., Oliveira-Pacheco, J., Ó Cinnéide, E., Haase, M.A.B., Hittinger, C.T., Rogers, T.R., et al. (2021) Population Genomics of the Pathogenic Yeast Candida Tropicalis Identifies Hybrid Isolates in Environmental Samples. PLOS Pathogens, 17, e1009138.
https://doi.org/10.1371/journal.ppat.1009138
[72]  Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D.W. and Azeredo, J. (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, Epidemiology, Pathogenicity and Antifungal Resistance. FEMS Microbiology Reviews, 36, 288-305.
https://doi.org/10.1111/j.1574-6976.2011.00278.x

[73]  Perini, H.F., Moralez, A.T.P., Almeida, R.S.C., Panagio, L.A., Junior, A.O.G., Barcellos, F.G., et al. (2019) Phenotypic Switching in Candida Tropicalis Alters Host-Pathogen Interactions in a Galleria mellonella Infection Model. Scientific Reports, 9, Article No. 12555.
https://doi.org/10.1038/s41598-019-49080-6

[74]  Bellmann, R. and Smuszkiewicz, P. (2017) Pharmacokinetics of Antifungal Drugs: Practical Implications for Optimized Treatment of Patients. Infection, 45, 737-779.
https://doi.org/10.1007/s15010-017-1042-z

[75]  Ivanov, M., Ćirić, A. and Stojković, D. (2022) Emerging Antifungal Targets and Strategies. International Journal of Molecular Sciences, 23, Article No. 2756.
https://doi.org/10.3390/ijms23052756

[76]  Li, Y., Sun, H., Zhu, X., Bian, C., Wang, Y. and Si, S. (2019) Identification of New Antifungal Agents Targeting Chitin Synthesis by a Chemical-Genetic Method. Molecules, 24, Article No. 3155.
https://doi.org/10.3390/molecules24173155

[77]  Klančnik, A., Megušar, P., Sterniša, M., Jeršek, B., Bucar, F., Smole Možina, S., et al. (2017) Aqueous Extracts of Wild Mushrooms Show Antimicrobial and Antiadhesion Activities against Bacteria and Fungi. Phytotherapy Research, 31, 1971-1976.
https://doi.org/10.1002/ptr.5934

[78]  Erbiai, E.H., Amina, B., Kaoutar, A., Saidi, R., Lamrani, Z., Pinto, E., et al. (2023) Chemical Characterization and Evaluation of Antimicrobial Properties of the Wild Medicinal Mushroom Ganoderma lucidum Growing in Northern Moroccan Forests. Life, 13, Article No. 1217.
https://doi.org/10.3390/life13051217

[79]  Prasad, Y. and Wesely, W.E. (2008) Antibacterial Activity of the Bio-Multidrug (Ganoderma lucidum) on Multidrug Resistant Staphylococcus aureus (MRSA). Journal of Advanced Biotechnology, 10, 16.
[80]  Nwachukwu, E. and Uzoeto, H.O. (2010) Antimicrobial Activities of Leaf of Vitex doniana and Cajanus cajan on Some Bacteria. Researcher, 2, 37-47.
[81]  Torres-Martínez, B.D.M., Vargas-Sánchez, R.D., Ibarra-Arias, F.J., Ibarra-Torres, E.V., Torrescano-Urrutia, G.R. and Sánchez-Escalante, A. (2021) Efecto del solvente de extracción sobre la composición química, propiedades fisicoquímicas y biológicas de extractos de hongos comestibles. TIP Revista Especializada en Ciencias Químico-Biológicas, 24, 1-10.
https://doi.org/10.22201/fesz.23958723e.2021.333

[82]  Ngobeni, B., Mashele, S.S., Malebo, N.J., van der Watt, E. and Manduna, I.T. (2020) Disruption of Microbial Cell Morphology by Buxus macowanii. BMC Complementary Medicine and Therapies, 20, Article No. 266.
https://doi.org/10.1186/s12906-020-03049-5

[83]  Aabed, K., Mohammed, A.E., Benabdelkamel, H., Masood, A., Alfadda, A.A., Alanazi, I.O., et al. (2020) Antimicrobial Mechanism and Identification of the Proteins Mediated by Extracts from Asphaltum punjabianum and Myrtus communis. ACS Omega, 5, 31019-31035.
https://doi.org/10.1021/acsomega.0c04047

[84]  Matijašević, D., Pantić, M., Rašković, B., Pavlović, V., Duvnjak, D., Sknepnek, A., et al. (2016) The Antibacterial Activity of Coriolus Versicolor Methanol Extract and Its Effect on Ultrastructural Changes of Staphylococcus aureus and Salmonella enteritidis. Frontiers in Microbiology, 7, Article No. 1226.
https://doi.org/10.3389/fmicb.2016.01226

[85]  Pereira, F.C., Peiter, G.C., Justo, V.E., Huff, G.M., Conrado, P.C., da Silva, M.A., et al. (2023) Analysis of the Antifungal Potential of Macrocybe titans Extract against Candida albicans. Future Microbiology, 18, 357-371.
https://doi.org/10.2217/fmb-2022-0214

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133