全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Investigation of the Hydraulic Conductivity of Fractures in a Limestone Rock Mass

DOI: 10.4236/ojmh.2025.152007, PP. 91-108

Keywords: Hydraulic Conductivity, Apertures, Water Pressure Tests, Limestones, Pareto, Log-Normal, Dams, Grouting Works

Full-Text   Cite this paper   Add to My Lib

Abstract:

In rock masses, water flows predominantly through the fractures, such as ?ssures and joints. Consequently, characterising the hydraulic conductivity of fractures is an essential parameter in the construction of dams and the design of grouting works or drainage systems. The hydraulic conductivity of low-permeability rock masses and fractures is commonly evaluated by water pressure tests (packer tests), which are typically performed for sections of several meters at a time. This study investigates the hydraulic conductivity of the fractures in the limestone foundation of Mratinje Dam. The new methods and knowledge evaluate the existing data recorded during the investigations in the past. Borehole packer test data are collected and examined from nine boreholes before the dam’s construction. The results indicate that the Pareto and log-normal distributions can describe the fractures’ hydraulic conductivity and apertures. The revealed hydraulic apertures explain why the grout curtain was not fully effective after the dam construction.

References

[1]  Spasojević, S. (2022) Single-Layer Load-Bearing Tunnel Lining Structure in Hard Rock Masses. Gradjevinski materijali i konstrukcije, 65, 167-177.
https://doi.org/10.5937/grmk2204167s
[2]  Ivanović, K., Jovanović, L., Kujundzić, B., Marković, O., Radosavljevic, Ž., Tričković, T. and Petrović, P. (1974) The Results of Testing the Mechanical Characteristics of the Rock Mass in the Foundations of the Mratinje Dam. Symposium on the construction of HPP Mratinje, Nikšić, 24-26 May 1974, 65-76.
[3]  Ivanovíć, K., Jovanovíć, L., Markovíć, O. and Kujundzić, B. (1970) Complex Research of Rock Mass Mechanical Characteristics for the Mratinje Arch Dam. Proceeding of 2nd ISRM Congress, Belgrade, 21 September 1970.
[4]  Jovanović, L., Kujundzić, B., Marković, O., Radosavljević, Ž. and Božović, A. (1972) HPP “Mratinje” Detailed Design—Geology. Energoprojekt.
[5]  Belićević, V. and Knežević, D. (2011) Antifiltration Grout Curtain of Hydropower Plant Piva—Mratinje Dam. In: Mir, M.A., Garcia, R.R., et al., Eds., Dam Maintenance and Rehabilitation, Taylor and Francis, 415-425.
[6]  Kujundzić, B. (1979) Use of Tests and Monitoring in the Design and Construction of Rock Structures. Proceeding of 4th International Congress Rock Mechanics (ISRM), Montreux, September 1979, 181-186.
[7]  Butron, C. (2012) Drip Sealing Grouting of Tunnels in Crystalline Rock: Conceptualization and Technical Strategies. Ph.D. Thesis, Chalmers University of Technology.
[8]  Vaskou, P., de Quadros, E.F., Kanji, M.A., Johnson, T. and Ekmekci, M. (2019) ISRM Suggested Method for the Lugeon Test. Rock Mechanics and Rock Engineering, 52, 4155-4174.
https://doi.org/10.1007/s00603-019-01954-x
[9]  Quiñones-Rozo, C. (2010) Lugeon Test Interpretation, Revisited. Collaborative Management of Integrated Watersheds, Bliss, 405-414
[10]  Fell, R., MacGregor, P., Stapledon, D. and Bell, G. (2005) Geotechnical Engineering of Dams. Taylor & Francis.
https://doi.org/10.1201/NOE0415364409
[11]  Laubach, S.E., Lander, R.H., Criscenti, L.J., Anovitz, L.M., Urai, J.L., Pollyea, R.M., et al. (2019) The Role of Chemistry in Fracture Pattern Development and Opportunities to Advance Interpretations of Geological Materials. Reviews of Geophysics, 57, 1065-1111.
https://doi.org/10.1029/2019rg000671
[12]  Dershowitz, W.S. and Herda, H.H. (1992) Interpretation of Fracture Spacing and Intensity: Dershowitz, W S; Herda, H H Proc 33rd US Symposium on Rock Mechanics, Santa Fe, 3-5 June 1992 P757-766. Publ Rotterdam: A A Balkema, 1992. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30, A212.
https://doi.org/10.1016/0148-9062(93)91769-f
[13]  Gustafson, G. and Fransson, Å. (2005) The Use of the Pareto Distribution for Fracture Transmissivity Assessment. Hydrogeology Journal, 14, 15-20.
https://doi.org/10.1007/s10040-005-0440-y
[14]  Snow, D.T. (1969) Anisotropie Permeability of Fractured Media. Water Resources Research, 5, 1273-1289.
https://doi.org/10.1029/wr005i006p01273
[15]  Louis, C. (1974) Rock Hydraulics in Rock Mechanics. Springer Verlag.
[16]  Carlsson, A. and Olsson, T. (1977) Hydraulic Properties of Swedish Crystalline Rocks-Hydraulic Conductivity and Its Relation to Depth. Bulletin of the Geological Institute, 71-84.
[17]  Burgess, A. (1977) Groundwater Movements around a Repository Regional Groundwater Analysis. Kaernbraenslesaekerhet.
[18]  Black, H.J. (1987) Flow and Flow Mechanisms in Crystalline Rock. In: The Geology of Fluid Flow: Fluid Flow in Sedimentary Basins and Aquifers, Blackwell Scientific, 185-200.
https://doi.org/10.1144/GSL.SP.1987.034.01.13
[19]  Wei, Z.Q., Egger, P. and Descoeudres, F. (1995) Permeability Predictions for Jointed Rock Masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32, 251-261.
https://doi.org/10.1016/0148-9062(94)00034-z
[20]  Lakshmanan, E. (2011) Hydraulic Conductivity—Issues, Determination and Applications. IntechOpen,
https://doi.org/10.5772/744
[21]  Woodbury, A.D. and Sudicky, E.A. (1991) The Geostatistical Characteristics of the Borden Aquifer. Water Resources Research, 27, 533-546.
https://doi.org/10.1029/90wr02545
[22]  Rehfeldt, K.R., Boggs, J.M. and Gelhar, L.W. (1992) Field Study of Dispersion in a Heterogeneous Aquifer: 3. Geostatistical Analysis of Hydraulic Conductivity. Water Resources Research, 28, 3309-3324.
https://doi.org/10.1029/92wr01758
[23]  Freeze, R.A. (1975) A Stochastic‐Conceptual Analysis of One‐Dimensional Groundwater Flow in Nonuniform Homogeneous Media. Water Resources Research, 11, 725-741.
https://doi.org/10.1029/wr011i005p00725
[24]  Genereux, D.P., Leahy, S., Mitasova, H., Kennedy, C.D. and Corbett, D.R. (2008) Spatial and Temporal Variability of Streambed Hydraulic Conductivity in West Bear Creek, North Carolina, USA. Journal of Hydrology, 358, 332-353.
https://doi.org/10.1016/j.jhydrol.2008.06.017
[25]  Lu, C., Qin, W., Zhao, G., Zhang, Y. and Wang, W. (2017) Better-Fitted Probability of Hydraulic Conductivity for a Silty Clay Site and Its Effects on Solute Transport. Water, 9, Article 466.
https://doi.org/10.3390/w9070466
[26]  Arnold, C. (1983) Pareto Distributions, MD. International Co-Operative Publishing House.
[27]  Aitchison, J. and Brown, A.J. (1957) The Lognormal Distribution. Cambridge University Press.
[28]  Warren, J.E. and Price, H.S. (1961) Flow in Heterogeneous Porous Media. Society of Petroleum Engineers Journal, 1, 153-169.
https://doi.org/10.2118/1579-g
[29]  Desbarats, A.J. (1987) Numerical Estimation of Effective Permeability in Sand‐shale Formations. Water Resources Research, 23, 273-286.
https://doi.org/10.1029/wr023i002p00273
[30]  Durlofsky, L.J. (1991) Numerical Calculation of Equivalent Grid Block Permeability Tensors for Heterogeneous Porous Media. Water Resources Research, 27, 699-708.
https://doi.org/10.1029/91wr00107
[31]  Hinrichsen, E.L., Aharony, A., Feder, J., Hansen, A., Jøssang, T. and Hardy, H.H. (1993) A Fast Algorithm for Estimating Large-Scale Permeabilities of Correlated Anisotropic Media. Transport in Porous Media, 12, 55-72.
https://doi.org/10.1007/bf00616362
[32]  Zipf, K. (1949) Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley Press.
[33]  Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2010) Statistical Distributions. 4th Edition, Wiley.
https://doi.org/10.1002/9780470627242
[34]  Priest, S. (1973) Discontinuity Analysis for Rock Engineering. Chapman & Hall.
https://doi.org/10.1007/978-94-011-1498-1
[35]  Norton, D. and Knapp, R. (1977) Transport Phenomena in Hydrothermal Systems; the Nature of Porosity. American Journal of Science, 277, 913-936.
https://doi.org/10.2475/ajs.277.8.913
[36]  Sausse, J. (1998) Caractérisation et modélisation des écoulements fluides en milieu fissuré. Relation avec les altérations hydrothermales et quantification des paléocontraintes. Université Henri Poincaré-Nancy.
https://theses.hal.science/tel-00011716v2
[37]  Stober, I. and Bucher, K. (2007) Hydraulic Properties of the Crystalline Basement. Hydrogeology Journal, 15, 1643-1643.
https://doi.org/10.1007/s10040-007-0214-9
[38]  Laubach, S.E., Lamarche, J., Gauthier, B.D.M., Dunne, W.M. and Sanderson, D.J. (2018) Spatial Arrangement of Faults and Opening-Mode Fractures. Journal of Structural Geology, 108, 2-15.
https://doi.org/10.1016/j.jsg.2017.08.008
[39]  Galdi, G.P. (2012) Navier-Stokes Equations: A Mathematical Analysis. In: Meyers, R., Ed., Mathematics of Complexity and Dynamical Systems, Springer, 1009-1042.
https://doi.org/10.1007/978-1-4614-1806-1_60
[40]  Witherspoon, P.A., Wang, J.S.Y., Iwai, K. and Gale, J.E. (1980) Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture. Water Resources Research, 16, 1016-1024.
https://doi.org/10.1029/wr016i006p01016
[41]  Milsch, H., Hofmann, H. and Blöcher, G. (2016) An Experimental and Numerical Evaluation of Continuous Fracture Permeability Measurements during Effective Pressure Cycles. International Journal of Rock Mechanics and Mining Sciences, 89, 109-115.
https://doi.org/10.1016/j.ijrmms.2016.09.002
[42]  Santos, R.F.V.C., Miranda, T.S., Barbosa, J.A., Gomes, I.F., Matos, G.C., Gale, J.F.W., et al. (2015) Characterization of Natural Fracture Systems: Analysis of Uncertainty Effects in Linear Scanline Results. AAPG Bulletin, 99, 2203-2219.
https://doi.org/10.1306/05211514104

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133