In rock masses, water flows predominantly through the fractures, such as ?ssures and joints. Consequently, characterising the hydraulic conductivity of fractures is an essential parameter in the construction of dams and the design of grouting works or drainage systems. The hydraulic conductivity of low-permeability rock masses and fractures is commonly evaluated by water pressure tests (packer tests), which are typically performed for sections of several meters at a time. This study investigates the hydraulic conductivity of the fractures in the limestone foundation of Mratinje Dam. The new methods and knowledge evaluate the existing data recorded during the investigations in the past. Borehole packer test data are collected and examined from nine boreholes before the dam’s construction. The results indicate that the Pareto and log-normal distributions can describe the fractures’ hydraulic conductivity and apertures. The revealed hydraulic apertures explain why the grout curtain was not fully effective after the dam construction.
References
[1]
Spasojević, S. (2022) Single-Layer Load-Bearing Tunnel Lining Structure in Hard Rock Masses. Gradjevinskimaterijaliikonstrukcije, 65, 167-177. https://doi.org/10.5937/grmk2204167s
[2]
Ivanović, K., Jovanović, L., Kujundzić, B., Marković, O., Radosavljevic, Ž., Tričković, T. and Petrović, P. (1974) The Results of Testing the Mechanical Characteristics of the Rock Mass in the Foundations of the Mratinje Dam. Symposium on the construction of HPP Mratinje, Nikšić, 24-26 May 1974, 65-76.
[3]
Ivanovíć, K., Jovanovíć, L., Markovíć, O. and Kujundzić, B. (1970) Complex Research of Rock Mass Mechanical Characteristics for the Mratinje Arch Dam. Proceeding of 2nd ISRM Congress, Belgrade, 21 September 1970.
[4]
Jovanović, L., Kujundzić, B., Marković, O., Radosavljević, Ž. and Božović, A. (1972) HPP “Mratinje” Detailed Design—Geology. Energoprojekt.
[5]
Belićević, V. and Knežević, D. (2011) Antifiltration Grout Curtain of Hydropower Plant Piva—Mratinje Dam. In: Mir, M.A., Garcia, R.R., et al., Eds., Dam Maintenance and Rehabilitation, Taylor and Francis, 415-425.
[6]
Kujundzić, B. (1979) Use of Tests and Monitoring in the Design and Construction of Rock Structures. Proceeding of 4th International Congress Rock Mechanics (ISRM), Montreux, September 1979, 181-186.
[7]
Butron, C. (2012) Drip Sealing Grouting of Tunnels in Crystalline Rock: Conceptualization and Technical Strategies. Ph.D. Thesis, Chalmers University of Technology.
[8]
Vaskou, P., de Quadros, E.F., Kanji, M.A., Johnson, T. and Ekmekci, M. (2019) ISRM Suggested Method for the Lugeon Test. RockMechanicsandRockEngineering, 52, 4155-4174. https://doi.org/10.1007/s00603-019-01954-x
[9]
Quiñones-Rozo, C. (2010) Lugeon Test Interpretation, Revisited. Collaborative Management of Integrated Watersheds, Bliss, 405-414
[10]
Fell, R., MacGregor, P., Stapledon, D. and Bell, G. (2005) Geotechnical Engineering of Dams. Taylor & Francis. https://doi.org/10.1201/NOE0415364409
[11]
Laubach, S.E., Lander, R.H., Criscenti, L.J., Anovitz, L.M., Urai, J.L., Pollyea, R.M., etal. (2019) The Role of Chemistry in Fracture Pattern Development and Opportunities to Advance Interpretations of Geological Materials. ReviewsofGeophysics, 57, 1065-1111. https://doi.org/10.1029/2019rg000671
[12]
Dershowitz, W.S. and Herda, H.H. (1992) Interpretation of Fracture Spacing and Intensity: Dershowitz, W S; Herda, H H Proc 33rd US Symposium on Rock Mechanics, Santa Fe, 3-5 June 1992 P757-766. Publ Rotterdam: A A Balkema, 1992. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30, A212. https://doi.org/10.1016/0148-9062(93)91769-f
[13]
Gustafson, G. and Fransson, Å. (2005) The Use of the Pareto Distribution for Fracture Transmissivity Assessment. HydrogeologyJournal, 14, 15-20. https://doi.org/10.1007/s10040-005-0440-y
Louis, C. (1974) Rock Hydraulics in Rock Mechanics. Springer Verlag.
[16]
Carlsson, A. and Olsson, T. (1977) Hydraulic Properties of Swedish Crystalline Rocks-Hydraulic Conductivity and Its Relation to Depth. Bulletin of the Geological Institute, 71-84.
[17]
Burgess, A. (1977) Groundwater Movements around a Repository Regional Groundwater Analysis. Kaernbraenslesaekerhet.
[18]
Black, H.J. (1987) Flow and Flow Mechanisms in Crystalline Rock. In: TheGeologyofFluidFlow: Fluid Flow inSedimentaryBasinsandAquifers, Blackwell Scientific, 185-200. https://doi.org/10.1144/GSL.SP.1987.034.01.13
[19]
Wei, Z.Q., Egger, P. and Descoeudres, F. (1995) Permeability Predictions for Jointed Rock Masses. InternationalJournalofRockMechanicsandMiningSciences&GeomechanicsAbstracts, 32, 251-261. https://doi.org/10.1016/0148-9062(94)00034-z
[20]
Lakshmanan, E. (2011) Hydraulic Conductivity—Issues, Determination and Applications. IntechOpen, https://doi.org/10.5772/744
[21]
Woodbury, A.D. and Sudicky, E.A. (1991) The Geostatistical Characteristics of the Borden Aquifer. WaterResourcesResearch, 27, 533-546. https://doi.org/10.1029/90wr02545
[22]
Rehfeldt, K.R., Boggs, J.M. and Gelhar, L.W. (1992) Field Study of Dispersion in a Heterogeneous Aquifer: 3. Geostatistical Analysis of Hydraulic Conductivity. WaterResourcesResearch, 28, 3309-3324. https://doi.org/10.1029/92wr01758
[23]
Freeze, R.A. (1975) A Stochastic‐Conceptual Analysis of One‐Dimensional Groundwater Flow in Nonuniform Homogeneous Media. WaterResourcesResearch, 11, 725-741. https://doi.org/10.1029/wr011i005p00725
[24]
Genereux, D.P., Leahy, S., Mitasova, H., Kennedy, C.D. and Corbett, D.R. (2008) Spatial and Temporal Variability of Streambed Hydraulic Conductivity in West Bear Creek, North Carolina, USA. JournalofHydrology, 358, 332-353. https://doi.org/10.1016/j.jhydrol.2008.06.017
[25]
Lu, C., Qin, W., Zhao, G., Zhang, Y. and Wang, W. (2017) Better-Fitted Probability of Hydraulic Conductivity for a Silty Clay Site and Its Effects on Solute Transport. Water, 9, Article 466. https://doi.org/10.3390/w9070466
[26]
Arnold, C. (1983) Pareto Distributions, MD. International Co-Operative Publishing House.
[27]
Aitchison, J. and Brown, A.J. (1957) The Lognormal Distribution. Cambridge University Press.
[28]
Warren, J.E. and Price, H.S. (1961) Flow in Heterogeneous Porous Media. SocietyofPetroleumEngineersJournal, 1, 153-169. https://doi.org/10.2118/1579-g
[29]
Desbarats, A.J. (1987) Numerical Estimation of Effective Permeability in Sand‐shale Formations. WaterResourcesResearch, 23, 273-286. https://doi.org/10.1029/wr023i002p00273
[30]
Durlofsky, L.J. (1991) Numerical Calculation of Equivalent Grid Block Permeability Tensors for Heterogeneous Porous Media. WaterResourcesResearch, 27, 699-708. https://doi.org/10.1029/91wr00107
[31]
Hinrichsen, E.L., Aharony, A., Feder, J., Hansen, A., Jøssang, T. and Hardy, H.H. (1993) A Fast Algorithm for Estimating Large-Scale Permeabilities of Correlated Anisotropic Media. TransportinPorousMedia, 12, 55-72. https://doi.org/10.1007/bf00616362
[32]
Zipf, K. (1949) Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley Press.
[33]
Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2010) Statistical Distributions. 4th Edition, Wiley. https://doi.org/10.1002/9780470627242
[34]
Priest, S. (1973) Discontinuity Analysis for Rock Engineering. Chapman & Hall. https://doi.org/10.1007/978-94-011-1498-1
[35]
Norton, D. and Knapp, R. (1977) Transport Phenomena in Hydrothermal Systems; the Nature of Porosity. AmericanJournalofScience, 277, 913-936. https://doi.org/10.2475/ajs.277.8.913
[36]
Sausse, J. (1998) Caractérisation et modélisation des écoulements fluides en milieu fissuré. Relation avec les altérations hydrothermales et quantification des paléocontraintes. Université Henri Poincaré-Nancy. https://theses.hal.science/tel-00011716v2
[37]
Stober, I. and Bucher, K. (2007) Hydraulic Properties of the Crystalline Basement. HydrogeologyJournal, 15, 1643-1643. https://doi.org/10.1007/s10040-007-0214-9
[38]
Laubach, S.E., Lamarche, J., Gauthier, B.D.M., Dunne, W.M. and Sanderson, D.J. (2018) Spatial Arrangement of Faults and Opening-Mode Fractures. JournalofStructuralGeology, 108, 2-15. https://doi.org/10.1016/j.jsg.2017.08.008
[39]
Galdi, G.P. (2012) Navier-Stokes Equations: A Mathematical Analysis. In: Meyers, R., Ed., MathematicsofComplexityandDynamicalSystems, Springer, 1009-1042. https://doi.org/10.1007/978-1-4614-1806-1_60
[40]
Witherspoon, P.A., Wang, J.S.Y., Iwai, K. and Gale, J.E. (1980) Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture. WaterResourcesResearch, 16, 1016-1024. https://doi.org/10.1029/wr016i006p01016
[41]
Milsch, H., Hofmann, H. and Blöcher, G. (2016) An Experimental and Numerical Evaluation of Continuous Fracture Permeability Measurements during Effective Pressure Cycles. InternationalJournalofRockMechanicsandMiningSciences, 89, 109-115. https://doi.org/10.1016/j.ijrmms.2016.09.002
[42]
Santos, R.F.V.C., Miranda, T.S., Barbosa, J.A., Gomes, I.F., Matos, G.C., Gale, J.F.W., etal. (2015) Characterization of Natural Fracture Systems: Analysis of Uncertainty Effects in Linear Scanline Results. AAPGBulletin, 99, 2203-2219. https://doi.org/10.1306/05211514104