|
Mine Engineering 2025
基于波速测试和扫描电镜试验的煤系砂岩损伤特性研究
|
Abstract:
为探究荷载下砂岩的损伤特性,采用MTS 816岩石测试系统和声波测试系统对岩石单轴加载过程的声波脉冲信号进行实时采集、处理,引入能耗比η量化岩石试件损伤演化程度。并通过SEM扫描电镜试验,从细观角度分析其破裂特性,并揭示其裂隙机制。研究结果表明:在单轴持续加载破坏过程中纵波波速变化经历“平稳→线性减小→台阶波动→台阶突降”4个阶段。岩石试样受载应力为92.1% σmax~96.1% σmax时,纵波波速出现变化点。能耗比η为0~1时,纵波波速出现线性减小,当η > 1时,纵波波速出现台阶波动和突降。在单轴循环加卸载破坏过程中纵波波速变化经历“台阶波动→波动下降→台阶突降”3个阶段。岩石试样受载应力为38.8% σmax~43.9% σmax时,纵波波速值降低。能耗比η为0~0.65时,纵波波速出现“台阶”波动,当η > 0.65时,纵波波速出现台阶突降。基于波速测试和扫描电镜试验的煤系砂岩损伤特性研究,具有重要的工程意义,可为地球物理勘探提供参考。
In order to explore the damage characteristics of sandstone under load, the MTS 816 rock test system and the acoustic wave test system were used to collect and process the acoustic wave pulse signals in the uniaxial loading process of rock in real time, and the energy consumption ratio η was introduced to quantify the degree of damage evolution of rock specimens. And through the SEM scanning electron microscope test, its fracture characteristics were analyzed from a microscopic perspective, and its crack mechanism was revealed. The research results show that the change of longitudinal wave velocity in the process of uniaxial continuous loading failure goes through four stages: “stable → linear decrease → step fluctuation → step sudden drop”. When the rock specimen is loaded with a stress of 92.1% σmax~96.1% σmax, the longitudinal wave velocity has a change point. When the energy consumption ratio η is 0~1, the longitudinal wave velocity decreases linearly. When η > 1, the longitudinal wave velocity fluctuates and drops suddenly. During the uniaxial cyclic loading and unloading damage process, the change of longitudinal wave velocity experienced three stages: “step fluctuation → fluctuation decrease → step sudden drop”. When the rock sample was loaded with a stress of 38.8% σmax~43.9% σmax, the longitudinal wave velocity value decreased. When the energy consumption ratio η was 0~0.65, the longitudinal wave velocity showed “step” fluctuations, and when η > 0.65, the longitudinal wave velocity showed a step sudden drop. The study of the damage characteristics of coal-bearing sandstone based on wave velocity
[1] | 曹代勇, 王佟, 琚宜文, 等. 中国煤田构造研究现状与展望[J]. 中国煤炭地质, 2008, 20(10): 1-6. |
[2] | 余伟健, 高谦, 靳学奇, 等. 受断层构造影响的深部岩体现场调查及力学特征分析[J]. 地球物理学进展, 2013, 28(1): 488-497. |
[3] | 黄真萍, 张义, 孙艳坤, 等. 高温遇水冷却石灰岩力学与声学性质研究[J]. 中南大学学报(自然科学版), 2016, 47(12): 4181-4189. |
[4] | 黄真萍, 张义, 吴伟达. 遇水冷却的高温大理岩力学与波动特性分析[J]. 岩土力学, 2016, 37(2): 367-375. |
[5] | 赵明阶, 吴德伦. 单轴加载条件下岩石声学参数与应力的关系研究[J]. 岩石力学与工程学报, 1999, 18(1): 50-54. |
[6] | 赵明阶, 吴德伦. 工程岩体的超声波分类及强度预测[J]. 岩石力学与工程学报, 2000, 19(1): 89-92. |
[7] | 邓华锋, 原先凡, 李建林, 等. 饱水度对砂岩纵波波速及强度影响的试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1625-1631. |
[8] | 潘建武, 苏承东. 砂岩强度及平均模量和纵波速度关系研究[J]. 采矿与安全工程学报, 2010, 27(1): 24-29. |
[9] | 尤明庆, 苏承东, 杨圣奇. 岩石动静态参数间关系的研究[J]. 焦作工学院学报(自然科学版), 2002, 21(6): 413-419. |
[10] | 尤明庆, 苏承东, 李小双. 损伤岩石试样的力学特性与纵波速度关系研究[J]. 岩石力学与工程学报, 2008, 27(3): 458-467. |
[11] | 刘海康, 张思渊, 张鑫鑫. 不同初始含水率下砂岩冻融劣化特性试验研究[J]. 科学技术与工程, 2017, 17(26): 322-327. |
[12] | 刘倩颖, 张茹, 王满, 等. 不同赋存深度煤的物性特征[J]. 煤炭学报, 2017, 42(8): 2101-2109. |
[13] | Xu, L., Gong, F. and Luo, S. (2021) Effects of Pre-Existing Single Crack Angle on Mechanical Behaviors and Energy Storage Characteristics of Red Sandstone under Uniaxial Compression. Theoretical and Applied Fracture Mechanics, 113, Article 102933. https://doi.org/10.1016/j.tafmec.2021.102933 |
[14] | Moomivand, H., Maarefvand, P. and Moomivand, H. (2021) A New Empirical Approach to Assess Wave Velocities and Dynamic Elastic Properties of Several Models of Jointed Rock before and after Grouting. Rock Mechanics and Rock Engineering, 54, 6439-6455. https://doi.org/10.1007/s00603-021-02625-6 |
[15] | Tedde, F., Maiu, A., Plaisant, A. and Pettinau, A. (2023) Experimental Comparison between Dynamic and Static Parameters for Volcanic Rocks in Sulcis Basin (Italy). Journal of Applied Geophysics, 217, Article 105181. https://doi.org/10.1016/j.jappgeo.2023.105181 |
[16] | Zhou, K.Y., Malkowski, P. and Chai, Y.J. (2023) Using Elastic Wave Velocity Anomaly to Predict Rockburst Hazard in Coal Mines. Archives of Mining Sciences, 68, 141-164. |
[17] | Rahman, T. and Sarkar, K. (2023) Correlations between Uniaxial Compressive Strength and Dynamic Elastic Properties for Six Rock Types. International Journal of Geomechanics, 23, Article 04023064. https://doi.org/10.1061/ijgnai.gmeng-7854 |
[18] | 付佳佳, 王炼, 尤苏南, 等. 黏-砂混合土压缩特性与微观结构特征关系研究[J]. 长江科学院院报, 2021, 38(5): 115-122. |
[19] | Liu, H., Sun, S., Wang, L., Zhang, Y., Wang, J., Luo, G., et al. (2020) Microscopic Mechanism of the Macroscopic Mechanical Properties of Cement Modified Subgrade Silty Soil Subjected to Freeze-Thaw Cycles. Applied Sciences, 10, Article 2182. https://doi.org/10.3390/app10062182 |
[20] | 何俊, 管家贤, 张磊, 等. 干湿循环对固化污泥微观结构及强度的影响[J]. 水利水电科技进展, 2022, 42(4): 39-44. |
[21] | 邓铭江, 蔡正银, 郭万里, 等. 北疆白砂岩特殊物理力学性质试验研究[J]. 岩土工程学报, 2020(S1): 1-5. |
[22] | 邓铭江, 蔡正银, 郭万里, 等. 换填及排水改造对北疆输水渠道稳定性的影响[J]. 岩土工程学报, 2021, 43(5): 789-794. |
[23] | 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. |
[24] | 杨小彬, 程虹铭, 吕嘉琦, 等. 三轴循环荷载下砂岩损伤耗能比演化特征研究[J]. 岩土力学, 2019, 40(10): 3751-3757, 3766. |
[25] | 王向宇, 周宏伟, 钟江城, 等. 三轴循环加卸载下深部煤体损伤的能量演化和渗透特性研究[J]. 岩石力学与工程学报, 2018, 37(12): 2676-2684. |
[26] | 赵奎, 刘周超, 曾鹏, 等. 单轴压缩下不同尺寸充填体能量损伤演化特征试验研究[J]. 黄金科学技术, 2022, 30(4): 540-549. |
[27] | 杨圣奇, 田文岭, 董晋鹏. 高温后两种晶粒花岗岩破坏力学特性试验研究[J]. 岩土工程学报, 2021, 43(2): 281-289. |
[28] | 谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565-3570. |
[29] | 金丰年, 蒋美蓉, 高小玲. 基于能量耗散定义损伤变量的方法[J]. 岩石力学与工程学报, 2004, 23(12): 1976-1980. |
[30] | 谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探[J]. 岩石力学与工程报, 2005, 24(15): 2604-2608. |
[31] | 李子运, 吴光, 黄天柱, 等. 三轴循环荷载作用下页岩能量演化规律及强度失效判据研究[J]. 岩石力学与工程学报, 2018, 37(3): 662-670. |