|
北京地区对流层–平流层臭氧浓度廓线观测与分析
|
Abstract:
本文利用2022年8月至2024年12月的大气臭氧探空资料,分析了北京地区边界层、对流层、平流层臭氧浓度的平均月变化以及季节变化等。结果显示:大气边界层下层1月臭氧浓度值最小为29.9 × 10?9 (体积分数,下同),最大值为6月达到了88.24 × 10?9,1月到6月逐月递增之后逐渐递减,臭氧浓度随高度逐渐增长;大气边界层到对流层顶臭氧浓度随高度先减少,接近对流层顶浓度增长;平流层下部臭氧浓度偏低,之后逐渐增长在20~25 km出现极大值然后逐渐递减。季节变化特征为:对流层夏季臭氧浓度最大,冬季最小。边界层季节之间臭氧浓度积分量相差幅度更大,四个季节均呈现持续增长的趋势,冬春两季对流层顶偏低;平流层冬春两季臭氧浓度偏大,夏秋两季偏小。臭氧浓度极大值出现的高度略有波动。对流层、平流层臭氧浓度与霾的关系为:近地面春秋两季有霾情况下臭氧浓度更高,冬季无霾情况下偏高。对流层上部及平流层无霾时臭氧浓度更高并且冬春两季有霾时浓度极值出现在更高的位置,秋季出现在偏下的位置。
The paper uses the atmospheric ozone sounding data from August 2022 to December 2024 and analyzes the ozone concentration average monthly change and seasonal variation of the bounding layer, troposphere and stratosphere in Beijing. The results show that the ozone concentration of the bounding layer gets the minimum value which was 29.9 × 10?9 in January while gets the maximum value in June which was 88.24 × 10?9. From January to June, the ozone concentration increased first and then decreased. The ozone concentration would increase with the height. From the bounding layer to the top of the convective zone, the ozone concentration at first decreases with the growth in the height and then increases. The ozone concentration in the space under the stratosphere is very low but increases with the height and gets the maximum value when the altitude reaches 20~25 km and then decreases. In summer, the ozone concentration of the troposphere is the largest and the least in winter. The ozone concentration of the bounding layer changes a lot in integration variable when the season changes. In winter and spring, the ozone concentration of the troposphere is relatively low. The ozone concentration of the stratosphere is high in winter and spring while low in summer and fall. The height at which the ozone concentration gets the maximum value sometimes changes. In spring and fall, when there is haze around the floor, the ozone concentration is high. In winter, the ozone concentration is high when there is no haze. When there is no haze, the ozone concentration in the top of the troposphere and the stratosphere is high. When there is haze, the ozone concentration extreme value occurs at a higher height in winter and spring and a lower height in the fall.
[1] | 谢冰, 张华. 关于大气臭氧问题的主要研究进展[J]. 科学技术与工程, 2014, 14(8): 106-114. |
[2] | 郑长贵, 杨晓丽. 国外臭氧层研究进展[J]. 黑龙江气象, 1998, 12(3): 44-48. |
[3] | 张金强, 王振会. 臭氧总量的纬度带变化特征分析[J]. 科技信息, 2007(16): 1-2. |
[4] | 周秀骥, 李维亮, 陈隆勋, 刘煜. 青藏高原地区大气臭氧变化的研究[J]. 气象学报, 2004, 62(5): 513-526. |
[5] | 周任君, 陈月娟. 青藏高原臭氧低值中心的变化与我国气候的关系[J]. 大气科学, 2007, 31(3): 479-485. |
[6] | 卞林根, 林忠, 张东启, 郑向东, 陆龙骅. 南极大气臭氧和温度垂直结构及其季节变化的研究[J]. 中国科学: 地球科学, 2011, 41(12): 1762-1770. |
[7] | 王自发, 李丽娜, 吴其重, 高超, 李昕. 区域输送对北京夏季臭氧浓度影响的数值模拟研究[J]. 自然杂志, 2008, 30(4): 194-198. |
[8] | 王雪松, 李金龙, 张远航, 谢绍东, 唐孝炎. 北京地区臭氧污染的来源分析[J]. 中国科学, 2009, 39(6): 548-559. |
[9] | 郑向东, 丁国安, 于海青等. 十三陵“清洁区”秋季臭氧在地面及近地边界层垂直分布变化的探测研究[J]. 中国科学: 地球科学, 2005, 3(s1): 45-52. |
[10] | 刘小红, 洪钟祥, 李家伦, 等.北京市气象塔秋季大气O3, NOx及CO浓度变化的观测实验[J]. 自然科学进展, 2000, 10(3): 338-342. |
[11] | 刘小红, 洪钟祥, 李家伦, 等. 北京地区严重大气污染的气象和化学因子[J]. 气候与环境研究, 1999, 4(3): 231-236. |
[12] | 王雪松, 李金龙. 北京地区臭氧源识别个例研究[J]. 北京大学学报, 2003, 39(2): 245-253. |
[13] | 王庚辰, 孔琴心, 陈洪滨. 北京地区对流层顶变化及其对上对流层/下平流层区域臭氧变化的影响[J]. 大气科学, 2006, 30(4): 587-595. |
[14] | 宗雪梅, 王庚辰, 陈洪滨, 王普才, 宣越健. 北京地区边界层大气臭氧浓度变化特征分析[J]. 环境科学, 2007, 28(11): 2615-2619. |
[15] | 唐贵谦, 李昕, 王效科, 辛金元, 胡波, 王莉莉, 任玉芬, 王跃思. 天气型对北京地区近地面臭氧的影响[J]. 环境科学, 2010, 31(3): 574-578. |
[16] | Andreae, M.O. and Merlet, P. (2001) Emission of Trace Gases and Aerosols from Biomass Burning. Global Biogeochemical Cycles, 15, 955-966. https://doi.org/10.1029/2000gb001382 |
[17] | Middleton, P. and Chang, J.S. (1990) Analysis of RADM Gas Concentration Predictions Using OSCAR and NEROS Monitoring Data. Atmospheric Environment. Part A. General Topics, 24, 2113-2125. https://doi.org/10.1016/0960-1686(90)90245-i |
[18] | Haagen-Smit, A.J. (1952) Chemistry and Physiology of Los Angeles Smog. Industrial & Engineering Chemistry, 44, 1342-1346. https://doi.org/10.1021/ie50510a045 |
[19] | Junge, C.E. (1963) Air Chemistry and Radioactivity. Academic Press, 23-27. |
[20] | Wang, X., Lu, W., Wang, W. and Leung, A.Y.T. (2003) A Study of Ozone Variation Trend within Area of Affecting Human Health in Hong Kong. Chemosphere, 52, 1405-1410. https://doi.org/10.1016/s0045-6535(03)00476-4 |
[21] | Arbaugh, M.J., Miller, P.R., Carroll, J.J., Takemoto, B. and Procter, T. (1998) Relationships of Ozone Exposure to Pine Injury in the Sierra Nevada and San Bernardino Mountains of California, Usa. Environmental Pollution, 101, 291-301. https://doi.org/10.1016/s0269-7491(98)00027-x |
[22] | Rabl, A. (1998) An Estimate of Regional and Global O3 Damage from Precursor Nox and VOC Emissions. Environment International, 24, 835-850. https://doi.org/10.1016/s0160-4120(98)00053-1 |
[23] | Randel, W.J. (1993) Global Variations of Zonal Mean Ozone during Stratospheric Warming Events. Journal of the Atmospheric Sciences, 50, 3308-3321. https://doi.org/10.1175/1520-0469(1993)050<3308:gvozmo>2.0.co;2 |
[24] | Polvani, L.M., Waugh, D.W., Correa, G.J.P. and Son, S. (2011) Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere. Journal of Climate, 24, 795-812. https://doi.org/10.1175/2010jcli3772.1 |
[25] | Aghedo, A.M., Bowman, K.W., Worden, H.M., Kulawik, S.S., Shindell, D.T., Lamarque, J.F., et al. (2011) The Vertical Distribution of Ozone Instantaneous Radiative Forcing from Satellite and Chemistry Climate Models. Journal of Geophysical Research, 116, 305-321. https://doi.org/10.1029/2010jd014243 |
[26] | Tomas, W.C. (2010) World Meteorological Organization Global Ozone research and Monitoring Project. Scientific Assessment of Ozone Depletion, 23, 12-67. |
[27] | Smit, H.G.J., Straeter, W., Johnson, B.J., Oltmans, S.J., Davies, J., Tarasick, D.W., et al. (2007) Assessment of the Performance of ECC‐Ozonesondes under Quasi‐flight Conditions in the Environmental Simulation Chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). Journal of Geophysical Research: Atmospheres, 112, D19306. https://doi.org/10.1029/2006jd007308 |
[28] | Deshler, T., Mercer, J.L., Smit, H.G.J., Stubi, R., Levrat, G., Johnson, B.J., et al. (2008) Atmospheric Comparison of Electrochemical Cell Ozonesondes from Different Manufacturers, and with Different Cathode Solution Strengths: The Balloon Experiment on Standards for Ozonesondes. Journal of Geophysical Research: Atmospheres, 113, D04307. https://doi.org/10.1029/2007jd008975 |
[29] | Logan, J.A. (1999) An Analysis of Ozonesonde Data for the Troposphere: Recommendations for Testing 3‐D Models and Development of a Gridded Climatology for Tropospheric Ozone. Journal of Geophysical Research: Atmospheres, 104, 16115-16149. https://doi.org/10.1029/1998jd100096 |
[30] | 宣越健, 王庚辰, 马舒庆, 潘毅等. 新型GPSO3大气臭氧探空系统[J]. 新世纪气象科技创新与大气科学发展: 地球气候和环境系统的探测与研究, 1988, 12(2): 214-217. |
[31] | 王庚辰, 孔琴心, 宣越键, 陈洪滨. 我国大气臭氧探空仪的研制和应用[J]. 地球科学进展, 2003, 18(3): 472-475. |
[32] | 孔琴心, 王庚辰, 刘广仁, 等. 大气臭氧垂直分布的电化学测量[J]. 大气科学, 1992, 16(5): 636-640. |
[33] | 宣越健, 马舒庆, 陈洪滨, 王庚辰, 孔琴心, 赵琼, 万小伟. 国产GPSO3与芬兰Vaisala臭氧探空仪的比对试验[J]. 高原气象, 2004, 23(3): 394-399. |
[34] | 王庚辰, 孔琴心, 宣越健, 万小伟, 陈洪滨, 马舒庆, 赵琼. GPSO3和Vsala臭氧探空仪平行施放比对结果的初步分析[J]. 应用气象学报, 2004, 15(6): 672-680. |