全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解二维变系数G-方程的高精度交替方向隐格式
High Accuracy Alternating Direction Implicit Scheme for Solving Two-Dimensional Variable Coefficient G-Equations

DOI: 10.12677/pm.2025.152067, PP. 268-276

Keywords: 非线性期望,二维变系数G-方程,ADI格式
Nonlinear Expectation
, Two-Dimensional Variable Coefficient G-Equation, ADI Scheme

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了求解二维变系数G方程的高精度交替方向隐式(ADI)格式,该方法在物理、金融和计算数学中具有重要应用。我们分析了该格式的稳定性,并进行了数值实验,比较了不同格式的绝对误差,验证了ADI格式的有效性。
In this paper, we propose high-accuracy Alternating Direction Implicit (ADI) scheme for solving two-dimensional variable coefficient G-equations, which have significant applications in physics, finance and computational mathematics. The stability of the scheme is analyzed, and numerical experiment is conducted to compare absolute errors across different schemes, confirming the effectiveness of the scheme.

References

[1]  Peng, S. (2007) G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Itô Type. In: Benth, F.E., et al., Eds., Stochastic Analysis and Applications: The Abel Symposium 2005, Springer, 541-567.
https://doi.org/10.1007/978-3-540-70847-6_25
[2]  Peng, S. (2019) Law of Large Numbers and Central Limit Theorem under Nonlinear Expectations. Probability, Uncertainty and Quantitative Risk, 4, Article No. 4.
https://doi.org/10.1186/s41546-019-0038-2
[3]  Peng, S. (2019) Nonlinear Expectations and Stochastic Calculus under Uncertainty. Springer.
[4]  Hu, M., Ji, S., Peng, S. and Song, Y. (2014) Comparison Theorem, Feynman-Kac Formula and Girsanov Transformation for BSDEs Driven by G-Brownian Motion. Stochastic Processes and Their Applications, 124, 1170-1195.
https://doi.org/10.1016/j.spa.2013.10.009
[5]  Peng, S. and Wang, F. (2015) BSDE, Path-Dependent PDE and Nonlinear Feynman-Kac Formula. Science China Mathematics, 59, 19-36.
https://doi.org/10.1007/s11425-015-5086-1
[6]  Yong, J. and Zhou, X. (2012) Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer Science & Business Media.
[7]  Pasik-Duncan, B. and Duncan, T.E. (2001) Stochastic Controls: Hamiltonian Systems and HJB Equations. IEEE Transactions on Automatic Control, 46, 1846-1846.
https://doi.org/10.1109/tac.2001.964706
[8]  Peng, S. (1992) A Generalized Dynamic Programming Principle and Hamilton-Jacobi-Bellman Equation. Stochastics and Stochastic Reports, 38, 119-134.
https://doi.org/10.1080/17442509208833749
[9]  Hu, M. (2012) Explicit Solutions of the-Heat Equation for a Class of Initial Conditions. Nonlinear Analysis: Theory, Methods & Applications, 75, 6588-6595.
https://doi.org/10.1016/j.na.2012.08.002
[10]  宋彬彬. G-方程的数值方法[D]: [硕士学位论文]. 苏州: 苏州大学, 2014.
[11]  Yang, J. and Zhao, W. (2016) Numerical Simulations for G-Brownian Motion. Frontiers of Mathematics in China, 11, 1625-1643.
https://doi.org/10.1007/s11464-016-0504-9
[12]  王晓莹. 基于有限差分法的G-热方程数值解法[D]: [硕士学位论文]. 济南: 山东大学, 2021.
[13]  曹海峰. HJB偏微分方程的数值计算[D]: [硕士学位论文]. 济南: 山东大学, 2009.
[14]  Batchelor, G.K. (2000) An Introduction to Fluid Dynamics. Cambridge University Press.
https://doi.org/10.1017/cbo9780511800955
[15]  Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654.
https://doi.org/10.1086/260062
[16]  Heston, S.L. (1993) A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Review of Financial Studies, 6, 327-343.
https://doi.org/10.1093/rfs/6.2.327
[17]  李荣华, 刘波. 微分方程数值解法[M]. 第4版. 北京: 高等教育出版社, 2009: 83-139.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133