全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

工程化干细胞在组织再生领域的应用
Application of Engineered Stem Cells in the Field of Tissue Regeneration

DOI: 10.12677/jcpm.2025.41136, PP. 977-984

Keywords: 工程化干细胞,干细胞治疗,工程化策略,组织再生,组织工程
Engineered Stem Cells
, Stem Cell Therapy, Engineering Strategies, Tissue Regeneration, Tissue Engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

干细胞具有迁移、分化以及分泌各种治疗因子(如免疫调节因子)等功能,为攻克多种疾病难题提供了全新的思路与方向。当前,干细胞治疗虽已取得阶段性成果,但仍面临细胞存活率欠佳、靶向归巢效率低下、分化精准度不足等问题。为进一步提升干细胞的治疗效能并赋予其全新的功能特性,越来越多的研究致力于工程化干细胞改造,并应用到组织再生领域,且已初步展现出成效。本综述简要回顾干细胞的工程化策略,并重点阐述工程化干细胞在创伤修复、软骨愈合、骨修复、免疫调控等组织再生领域的应用进展。
Stem cells possess the abilities of migration, differentiation, and secretion of various therapeutic factors (such as immunomodulatory factors), which provide entirely new ideas and directions for conquering numerous disease challenges. In current clinical practice, although stem cell therapy has achieved phased results, there are still problems such as poor cell survival rate, low targeted homing efficiency, and insufficient differentiation accuracy. To further enhance the therapeutic efficacy of stem cells and endow them with new functional characteristics, an increasing number of studies are dedicated to the modification of engineered stem cells and their application in the field of tissue regeneration, and initial effects have been demonstrated. This review briefly reviews the engineering strategies of stem cells and focuses on elaborating the application progress of engineered stem cells in aspects such as wound repair, cartilage healing, bone repair, and immune regulation in tissue regeneration.

References

[1]  Blau, H.M. and Daley, G.Q. (2019) Stem Cells in the Treatment of Disease. New England Journal of Medicine, 380, 1748-1760.
https://doi.org/10.1056/nejmra1716145

[2]  Kaji, E.H. (2001) Gene and Stem Cell Therapies. Journal of the American Medical Association, 285, 545-550.
https://doi.org/10.1001/jama.285.5.545

[3]  Maimaitili, M., Chen, M., Febbraro, F., Ucuncu, E., Kelly, R., Niclis, J.C., et al. (2023) Enhanced Production of Mesencephalic Dopaminergic Neurons from Lineage-Restricted Human Undifferentiated Stem Cells. Nature Communications, 14, Article No. 7871.
https://doi.org/10.1038/s41467-023-43471-0

[4]  Ranganath, S.H., Levy, O., Inamdar, M.S. and Karp, J.M. (2012) Harnessing the Mesenchymal Stem Cell Secretome for the Treatment of Cardiovascular Disease. Cell Stem Cell, 10, 244-258.
https://doi.org/10.1016/j.stem.2012.02.005

[5]  Lou, Q., Jiang, K., Xu, Q., Yuan, L., Xie, S., Pan, Y., et al. (2022) The RIG-I-NRF2 Axis Regulates the Mesenchymal Stromal Niche for Bone Marrow Transplantation. Blood, 139, 3204-3221.
https://doi.org/10.1182/blood.2021013048

[6]  Wang, S., Du, Y., Zhang, B., Meng, G., Liu, Z., Liew, S.Y., et al. (2024) Transplantation of Chemically Induced Pluripotent Stem-Cell-Derived Islets under Abdominal Anterior Rectus Sheath in a Type 1 Diabetes Patient. Cell, 187, 6152-6164.e18.
https://doi.org/10.1016/j.cell.2024.09.004

[7]  Li, Y., Tsai, Y., Hsu, C., Erol, D., Yang, J., Wu, W., et al. (2012) Long-Term Safety and Efficacy of Human-Induced Pluripotent Stem Cell (IPS) Grafts in a Preclinical Model of Retinitis Pigmentosa. Molecular Medicine, 18, 1312-1319.
https://doi.org/10.2119/molmed.2012.00242

[8]  Kirkeby, A., Nelander, J., Hoban, D.B., Rogelius, N., Bjartmarz, H., Storm, P., et al. (2023) Preclinical Quality, Safety, and Efficacy of a Human Embryonic Stem Cell-Derived Product for the Treatment of Parkinson’s Disease, STEM-PD. Cell Stem Cell, 30, 1299-1314.e9.
https://doi.org/10.1016/j.stem.2023.08.014

[9]  Mathur, A., Taurin, S. and Alshammary, S. (2023) The Safety and Efficacy of Mesenchymal Stem Cells in the Treatment of Type 2 Diabetes—A Literature Review. Diabetes, Metabolic Syndrome and Obesity, 16, 769-777.
https://doi.org/10.2147/dmso.s392161

[10]  Jayaraj, J.S., Janapala, R.N., Qaseem, A., Usman, N., Fathima, N., Kashif, T., et al. (2019) Efficacy and Safety of Stem Cell Therapy in Advanced Heart Failure Patients: A Systematic Review with a Meta-Analysis of Recent Trials between 2017 and 2019. Cureus, 11, e5585.
https://doi.org/10.7759/cureus.5585

[11]  Galipeau, J. and Sensébé, L. (2018) Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell, 22, 824-833.
https://doi.org/10.1016/j.stem.2018.05.004

[12]  Rahimi Darehbagh, R., Seyedoshohadaei, S.A., Ramezani, R. and Rezaei, N. (2024) Stem Cell Therapies for Neurological Disorders: Current Progress, Challenges, and Future Perspectives. European Journal of Medical Research, 29, Article 386.
https://doi.org/10.1186/s40001-024-01987-1

[13]  Thurairajah, K., Broadhead, M. and Balogh, Z. (2017) Trauma and Stem Cells: Biology and Potential Therapeutic Implications. International Journal of Molecular Sciences, 18, Article 577.
https://doi.org/10.3390/ijms18030577

[14]  Wang, J., Zhang, X., Chen, H., Ren, H., Zhou, M. and Zhao, Y. (2024) Engineered Stem Cells by Emerging Biomedical Stratagems. Science Bulletin, 69, 248-279.
https://doi.org/10.1016/j.scib.2023.12.006

[15]  Kimbrel, E.A. and Lanza, R. (2020) Next-Generation Stem Cells—Ushering in a New Era of Cell-Based Therapies. Nature Reviews Drug Discovery, 19, 463-479.
https://doi.org/10.1038/s41573-020-0064-x

[16]  Wang, Y., Shi, J., Xin, M., Kahkoska, A.R., Wang, J. and Gu, Z. (2024) Cell-Drug Conjugates. Nature Biomedical Engineering, 8, 1347-1365.
https://doi.org/10.1038/s41551-024-01230-6

[17]  Dörnen, J., Myklebost, O. and Dittmar, T. (2020) Cell Fusion of Mesenchymal Stem/Stromal Cells and Breast Cancer Cells Leads to the Formation of Hybrid Cells Exhibiting Diverse and Individual (Stem Cell) Characteristics. International Journal of Molecular Sciences, 21, Article 9636.
https://doi.org/10.3390/ijms21249636

[18]  Aguirre, L.A., Montalbán-Hernández, K., Avendaño-Ortiz, J., Marín, E., Lozano, R., Toledano, V., et al. (2020) Tumor Stem Cells Fuse with Monocytes to Form Highly Invasive Tumor-Hybrid Cells. OncoImmunology, 9, Article 1773204.
https://doi.org/10.1080/2162402x.2020.1773204

[19]  Jin, H., Zhao, Y., Yao, Y., Fan, S., Luo, R., Shen, X., et al. (2024) Intratracheal Administration of Stem Cell Membrane-Cloaked Naringin-Loaded Biomimetic Nanoparticles Promotes Resolution of Acute Lung Injury. Antioxidants, 13, Article 282.
https://doi.org/10.3390/antiox13030282

[20]  Xie, J., Hu, Y., Li, H., Wang, Y., Fan, X., Lu, W., et al. (2023) Targeted Therapy for Peri-Prosthetic Osteolysis Using Macrophage Membrane-Encapsulated Human Urine-Derived Stem Cell Extracellular Vesicles. Acta Biomaterialia, 160, 297-310.
https://doi.org/10.1016/j.actbio.2023.02.003

[21]  Husteden, C., Brito Barrera, Y.A., Tegtmeyer, S., Borges, J., Giselbrecht, J., Menzel, M., et al. (2022) Lipoplex-Functionalized Thin-Film Surface Coating Based on Extracellular Matrix Components as Local Gene Delivery System to Control Osteogenic Stem Cell Differentiation. Advanced Healthcare Materials, 12, Article 2201978.
https://doi.org/10.1002/adhm.202201978

[22]  Peng, H., Chelvarajan, L., Donahue, R., Gottipati, A., Cahall, C.F., Davis, K.A., et al. (2021) Polymer Cell Surface Coating Enhances Mesenchymal Stem Cell Retention and Cardiac Protection. ACS Applied Bio Materials, 4, 1655-1667.
https://doi.org/10.1021/acsabm.0c01473

[23]  Yi, C., Liu, D., Fong, C., Zhang, J. and Yang, M. (2010) Gold Nanoparticles Promote Osteogenic Differentiation of Mesenchymal Stem Cells through P38 MAPK Pathway. ACS Nano, 4, 6439-6448.
https://doi.org/10.1021/nn101373r

[24]  Shuai, C., Yang, W., He, C., Peng, S., Gao, C., Yang, Y., et al. (2020) A Magnetic Micro-Environment in Scaffolds for Stimulating Bone Regeneration. Materials & Design, 185, Article 108275.
https://doi.org/10.1016/j.matdes.2019.108275

[25]  Martín-Moldes, Z., López Barreiro, D., Buehler, M.J. and Kaplan, D.L. (2021) Effect of the Silica Nanoparticle Size on the Osteoinduction of Biomineralized Silk-Silica Nanocomposites. Acta Biomaterialia, 120, 203-212.
https://doi.org/10.1016/j.actbio.2020.10.043

[26]  Wang, Y., Sun, C., Liu, Z., Zhang, S., Gao, K., Yi, F., et al. (2024) Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. Advanced Functional Materials, 34, Article 2410714.
https://doi.org/10.1002/adfm.202410714

[27]  Yin, S. and Cao, Y. (2021) Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomaterialia, 128, 1-20.
https://doi.org/10.1016/j.actbio.2021.03.026

[28]  Chen, K. and Knoepfler, P.S. (2016) To Crispr and Beyond: The Evolution of Genome Editing in Stem Cells. Regenerative Medicine, 11, 801-816.
https://doi.org/10.2217/rme-2016-0107

[29]  Wang, R., Wang, F., Lu, S., Gao, B., Kan, Y., Yuan, T., et al. (2023) Adipose-Derived Stem Cell/FGF19-Loaded Microfluidic Hydrogel Microspheres for Synergistic Restoration of Critical Ischemic Limb. Bioactive Materials, 27, 394-408.
https://doi.org/10.1016/j.bioactmat.2023.04.006

[30]  Fazeli, N., Arefian, E., Irani, S., Ardeshirylajimi, A. and Seyedjafari, E. (2021) 3d-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells. ACS Omega, 6, 35284-35296.
https://doi.org/10.1021/acsomega.1c04015

[31]  Varki, A. (2004) Glycosylation Engineering Enhances Stem Cell Homing. Blood, 104, 3005-3005.
https://doi.org/10.1182/blood-2004-08-3274

[32]  Sarkar, D., Zhao, W., Gupta, A., Loh, W.L., Karnik, R. and Karp, J.M. (2011) Cell Surface Engineering of Mesenchymal Stem Cells. In: Methods in Molecular Biology, Humana Press, 505-523.
https://doi.org/10.1007/978-1-60761-999-4_35

[33]  Han, H., Chen, B., Liu, Y., Wang, Y., Xing, L., Wang, H., et al. (2024) Engineered Stem Cell-Based Strategy: A New Paradigm of Next-Generation Stem Cell Product in Regenerative Medicine. Journal of Controlled Release, 365, 981-1003.
https://doi.org/10.1016/j.jconrel.2023.12.024

[34]  Nordberg, R.C., Bielajew, B.J., Takahashi, T., et al. (2024) Recent Advancements in Cartilage Tissue Engineering Innovation and Translation. Nature Reviews Rheumatology, 1, 1-22.
[35]  Yang, Z., Li, H., Tian, Y., Fu, L., Gao, C., Zhao, T., et al. (2021) Biofunctionalized Structure and Ingredient Mimicking Scaffolds Achieving Recruitment and Chondrogenesis for Staged Cartilage Regeneration. Frontiers in Cell and Developmental Biology, 9, Article 655440.
https://doi.org/10.3389/fcell.2021.655440

[36]  Kim, Y.S. and Mikos, A.G. (2021) Emerging Strategies in Reprogramming and Enhancing the Fate of Mesenchymal Stem Cells for Bone and Cartilage Tissue Engineering. Journal of Controlled Release, 330, 565-574.
https://doi.org/10.1016/j.jconrel.2020.12.055

[37]  Wu, C., Huang, Z., Chen, J., Li, N., Cai, Y., Chen, J., et al. (2025) Efficiently Directing Differentiation and Homing of Mesenchymal Stem Cells to Boost Cartilage Repair in Osteoarthritis via a Nanoparticle and Peptide Dual-Engineering Strategy. Biomaterials, 312, Article 122720.
https://doi.org/10.1016/j.biomaterials.2024.122720

[38]  Zhang, Y., Zhu, Q., Zhang, X., Chen, X., Wu, Z., Wang, J., et al. (2024) Rapid Tissue Adhesive Coat Improves Engraftment Efficiency of Stem Cell Therapy. Cell Reports Physical Science, 5, Article 102080.
https://doi.org/10.1016/j.xcrp.2024.102080

[39]  Huang, K., Liu, X., Qin, H., Li, Y., Zhu, J., Yin, B., et al. (2024) FGF18 Encoding Circular mRNA-LNP Based on Glycerolipid Engineering of Mesenchymal Stem Cells for Efficient Amelioration of Osteoarthritis. Biomaterials Science, 12, 4427-4439.
https://doi.org/10.1039/d4bm00668b

[40]  Li, F., Truong, V.X., Thissen, H., Frith, J.E. and Forsythe, J.S. (2017) Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS Applied Materials & Interfaces, 9, 8589-8601.
https://doi.org/10.1021/acsami.7b00728

[41]  Lin, C., Chang, Y., Lin, K., Yen, T., Tai, C., Chen, C., et al. (2010) The Healing of Critical-Sized Femoral Segmental Bone Defects in Rabbits Using Baculovirus-Engineered Mesenchymal Stem Cells. Biomaterials, 31, 3222-3230.
https://doi.org/10.1016/j.biomaterials.2010.01.030

[42]  杨林, 罗富里, 李赟, 等. 利用生物素-链霉亲和素进行骨髓间充质干细胞的表面标记[J]. 中国组织工程研究, 2016, 20(10): 1537-1542.
[43]  Feng, Z., Liu, J., Shen, C., Lu, N., Zhang, Y., Yang, Y., et al. (2015) Biotin-Avidin Mediates the Binding of Adipose-Derived Stem Cells to a Porous Β-Tricalcium Phosphate Scaffold: Mandibular Regeneration. Experimental and Therapeutic Medicine, 11, 737-746.
https://doi.org/10.3892/etm.2015.2961

[44]  Gao, W. and Xiao, Y. (2022) Advances in Cell Membrane-Encapsulated Biomaterials for Tissue Repair and Regeneration. Applied Materials Today, 26, Article 101389.
https://doi.org/10.1016/j.apmt.2022.101389

[45]  Chen, Z., Zou, Y., Sun, H., He, Y., Ye, K., Li, Y., et al. (2024) Engineered Enucleated Mesenchymal Stem Cells Regulating Immune Microenvironment and Promoting Wound Healing. Advanced Materials, 36, Article 2412253.
https://doi.org/10.1002/adma.202412253

[46]  Park, N., Kim, K.S., Park, C.G., Jung, H., Park, W. and Na, K. (2024) Adipose-derived Stem Cell-Based Anti-Inflammatory Paracrine Factor Regulation for the Treatment of Inflammatory Bowel Disease. Journal of Controlled Release, 374, 384-399.
https://doi.org/10.1016/j.jconrel.2024.08.027

[47]  Ye, T., Liu, X., Zhong, X., Yan, R. and Shi, P. (2023) Nongenetic Surface Engineering of Mesenchymal Stromal Cells with Polyvalent Antibodies to Enhance Targeting Efficiency. Nature Communications, 14, Article No. 5806.
https://doi.org/10.1038/s41467-023-41609-8

[48]  You, Y., Liu, Y., Ma, C., Xu, J., Xie, L., Tong, S., et al. (2023) Surface-Tethered Ros-Responsive Micelle Backpacks for Boosting Mesenchymal Stem Cell Vitality and Modulating Inflammation in Ischemic Stroke Treatment. Journal of Controlled Release, 362, 210-224.
https://doi.org/10.1016/j.jconrel.2023.08.039

[49]  Stock, A.A., Manzoli, V., De Toni, T., Abreu, M.M., Poh, Y., Ye, L., et al. (2020) Conformal Coating of Stem Cell-Derived Islets for Β Cell Replacement in Type 1 Diabetes. Stem Cell Reports, 14, 91-104.
https://doi.org/10.1016/j.stemcr.2019.11.004

[50]  Zhang, Y., Zhao, Y., An, C., Guo, Y., Ma, Y., Shao, F., et al. (2025) Material-Driven Immunomodulation and ECM Remodeling Reverse Pulmonary Fibrosis by Local Delivery of Stem Cell-Laden Microcapsules. Biomaterials, 313, Article 122757.
https://doi.org/10.1016/j.biomaterials.2024.122757

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133