全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

口服双歧杆菌四联活菌片对机械通气患者血清非靶向代谢组学的影响
The Effects of Oral Quadruple Live Bifidobacterium Tablets on the Serum Non-Targeted Metabolomics of Mechanically Ventilated Patients

DOI: 10.12677/jcpm.2025.41126, PP. 895-905

Keywords: 机械通气,益生菌,黏膜免疫力,代谢组学
Mechanical Ventilation
, Probiotics, Mucosal Immunity, Metabolomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:分析口服双歧杆菌四联活菌片对临床机械通气患者血清非靶向代谢组学和短链脂肪酸生成的影响,探讨双歧杆菌四联活菌片增强患者黏膜免疫力机制。方法:10例重症患者在给予常规治疗的同时口服双歧杆菌四联活菌片。治疗14天后收集血清用于降钙素原(PCT)、IL-6、IL-17、IgA水平检测,粪便用于3种主要短链脂肪酸(乙酸、丙酸和丁酸)浓度检测,采用超高效液相色谱–四极杆–飞行时间质谱(UPLC-Q-TOF/MS)技术分析患者血清非靶向代谢组学变化。结果:益生菌疗法处理后患者血清中PCT和IL-17水平较处理前显著降低,IgA浓度明显升高(P < 0.05),但粪便中3种短链脂肪酸浓度变化不显著(P > 0.05)。益生菌疗法可以显著影响患者亚油酸代谢、甘油磷脂代谢和色氨酸代谢。结论:口服双歧杆菌四联活菌片可以明显抑制患者体内炎症反应并增加IgA表达量,并且可以显著影响血清非靶向代谢组学。益生菌疗法可能通过亚油酸代谢、甘油磷脂代谢和色氨酸代谢途径抑制炎症并增强黏膜免疫力。
Objective: To analyze the effects of oral quadruple live bifidobacterium tablets on the serum non-targeted metabolomics and short-chain fatty acids production in clinical mechanically ventilated patients, and explore the mechanism by which probiotics enhance mucosal immune function in patients. Methods: Ten critically ill patients were given oral quadruple live bifidobacterium tablets while receiving routine treatment. After 14 days of treatment, serum was collected for measurement of procalcitonin (PCT), IL-6, IL-17, and IgA levels, and feces were collected for measurement of concentrations of three main short-chain fatty acids (acetic acid, propionic acid, and butyric acid). Ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) technology was used to analyze changes in the serum non-targeted metabolomics of the patients. Results: After probiotic therapy, the levels of PCT and IL-17 in the serum of patients were significantly reduced compared to before treatment, while IgA concentration significantly increased (P < 0.05), but the concentrations of the three short-chain fatty acids in the feces did not change significantly (P > 0.05). Probiotic therapy significantly affected the metabolism of arachidonic acid, glycerophospholipids, and tryptophan in patients. Conclusion: oral quadruple live bifidobacterium tablets can significantly inhibit inflammation in the body and increase IgA expression levels in patients, and can significantly affect serum non-targeted metabolomics. Probiotic therapy may inhibit inflammation and enhance mucosal immunity through the pathways of arachidonic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism.

References

[1]  Shimizu, K., Ogura, H., Goto, M., Asahara, T., Nomoto, K., Morotomi, M., et al. (2008) Synbiotics Decrease the Incidence of Septic Complications in Patients with Severe SIRS: A Preliminary Report. Digestive Diseases and Sciences, 54, 1071-1078.
https://doi.org/10.1007/s10620-008-0460-2

[2]  罗欣悦, 邓俊, 杨梓苑, 等. 重症监护室机械通气患者呼吸机相关性肺炎病原菌分布及风险预测模型构建[J]. 现代生物医学进展, 2023, 23(13): 2518-2522.
[3]  Kharel, S., Bist, A. and Mishra, S.K. (2021) Ventilator-associated Pneumonia among ICU Patients in WHO Southeast Asian Region: A Systematic Review. PLOS ONE, 16, e0247832.
https://doi.org/10.1371/journal.pone.0247832

[4]  Kaur, H. and Ali, S.A. (2022) Probiotics and Gut Microbiota: Mechanistic Insights into Gut Immune Homeostasis through TLR Pathway Regulation. Food & Function, 13, 7423-7447.
https://doi.org/10.1039/d2fo00911k

[5]  Dahiya, D. and Nigam, P.S. (2023) Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota—Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. International Journal of Molecular Sciences, 24, Article No. 3074.
https://doi.org/10.3390/ijms24043074

[6]  郑榕, 许若缨, 柯敏辉, 等. 基于“肺与大肠相表里”探讨“肺肠合病”与黏膜免疫的关系[J]. 北京中医药大学学报, 2020, 43(6): 487-491.
[7]  Zhang, D., Jian, Y., Zhang, Y., Li, Y., Gu, L., Sun, H., et al. (2023) Short-Chain Fatty Acids in Diseases. Cell Communication and Signaling, 21, Article No. 212.
https://doi.org/10.1186/s12964-023-01219-9

[8]  Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455.
https://doi.org/10.3920/bm2020.0057

[9]  Liu, X., Shao, J., Liao, Y., Wang, L., Jia, Y., Dong, P., et al. (2023) Regulation of Short-Chain Fatty Acids in the Immune System. Frontiers in Immunology, 14, Article ID: 1186892.
https://doi.org/10.3389/fimmu.2023.1186892

[10]  王文静, 周育萍, 黄秋娜, 等. 预防呼吸机相关性肺炎的指南证据总结[J]. 护理学报, 2021, 28(22): 58-63.
[11]  Shimizu, K., Ogura, H., Asahara, T., Nomoto, K., Morotomi, M., Tasaki, O., et al. (2012) Probiotic/Synbiotic Therapy for Treating Critically Ill Patients from a Gut Microbiota Perspective. Digestive Diseases and Sciences, 58, 23-32.
https://doi.org/10.1007/s10620-012-2334-x

[12]  Johnstone, J., Meade, M., Lauzier, F., Marshall, J., Duan, E., Dionne, J., et al. (2021) Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. JAMA, 326, 1024-1033.
https://doi.org/10.1001/jama.2021.13355

[13]  Wang, J., Liu, K., Ariani, F., Tao, L., Zhang, J. and Qu, J. (2013) Probiotics for Preventing Ventilator-Associated Pneumonia: A Systematic Review and Meta-Analysis of High-Quality Randomized Controlled Trials. PLOS ONE, 8, e83934.
https://doi.org/10.1371/journal.pone.0083934

[14]  陈正钢, 刘励军. 急诊脓毒症患者早期筛查生物标志物的研究现状与展望[J]. 临床急诊杂志, 2023, 24(2): 99-104.
[15]  Chen, W., Zhong, K., Guan, Y., Zhang, H.T., Zhang, H., Pan, T., et al. (2022) Evaluation of the Significance of Interleukin-6 in the Diagnosis of Postoperative Pneumonia: A Prospective Study. BMC Cardiovascular Disorders, 22, Article No. 306.
https://doi.org/10.1186/s12872-022-02744-0

[16]  Zhou, Y., Xiang, C., Wang, N., Zhang, X., Xie, Y., Yang, H., et al. (2022) Acinetobacter Baumannii Reinforces the Pathogenesis by Promoting IL-17 Production in a Mouse Pneumonia Model. Medical Microbiology and Immunology, 212, 65-73.
https://doi.org/10.1007/s00430-022-00757-2

[17]  Fusco, W., Lorenzo, M.B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., et al. (2023) Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15, Article No. 2211.
https://doi.org/10.3390/nu15092211

[18]  Silvester, J.A. (2021) Editorial: No Organ Is an Island: The Role of Gut-Organ Axes in Human Health and Disease. Current Opinion in Gastroenterology, 37, 545-546.
https://doi.org/10.1097/mog.0000000000000786

[19]  Abdalkareem Jasim, S., Jade Catalan Opulencia, M., Alexis Ramírez-Coronel, A., Kamal Abdelbasset, W., Hasan Abed, M., Markov, A., et al. (2022) The Emerging Role of Microbiota-Derived Short-Chain Fatty Acids in Immunometabolism. International Immunopharmacology, 110, Article ID: 108983.
https://doi.org/10.1016/j.intimp.2022.108983

[20]  Kotlyarov, S. (2022) Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 23, Article No. 4768.
https://doi.org/10.3390/ijms23094768

[21]  Bolognini, D., Dedeo, D. and Milligan, G. (2021) Metabolic and Inflammatory Functions of Short-Chain Fatty Acid Receptors. Current Opinion in Endocrine and Metabolic Research, 16, 1-9.
https://doi.org/10.1016/j.coemr.2020.06.005

[22]  王超, 高磊, 赵子健, 等. 益生菌附属发酵剂对切达干酪质构、游离氨基酸和短链脂肪酸的影响[J]. 食品与发酵工业, 2022, 48(8): 136-142.
[23]  Gai, X., Guo, C., Zhang, L., Zhang, L., Abulikemu, M., Wang, J., et al. (2021) Serum Glycerophospholipid Profile in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 12, Article ID: 646010.
https://doi.org/10.3389/fphys.2021.646010

[24]  Dushianthan, A., Grocott, M.P.W., Murugan, G.S., Wilkinson, T.M.A. and Postle, A.D. (2023) Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics, 13, Article No. 2964.
https://doi.org/10.3390/diagnostics13182964

[25]  Xue, C., Li, G., Zheng, Q., Gu, X., Shi, Q., Su, Y., et al. (2023) Tryptophan Metabolism in Health and Disease. Cell Metabolism, 35, 1304-1326.
https://doi.org/10.1016/j.cmet.2023.06.004

[26]  Su, X., Gao, Y. and Yang, R. (2022) Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells, 11, Article No. 2296.
https://doi.org/10.3390/cells11152296

[27]  Correia, A.S. and Vale, N. (2022) Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. International Journal of Molecular Sciences, 23, Article No. 8493.
https://doi.org/10.3390/ijms23158493

[28]  Tanaka, M., Tóth, F., Polyák, H., Szabó, Á., Mándi, Y. and Vécsei, L. (2021) Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines, 9, Article No. 734.
https://doi.org/10.3390/biomedicines9070734

[29]  Tsuji, A., Ikeda, Y., Yoshikawa, S., Taniguchi, K., Sawamura, H., Morikawa, S., et al. (2023) The Tryptophan and Kynurenine Pathway Involved in the Development of Immune-Related Diseases. International Journal of Molecular Sciences, 24, Article No. 5742.
https://doi.org/10.3390/ijms24065742

[30]  Fiore, A. and Murray, P.J. (2021) Tryptophan and Indole Metabolism in Immune Regulation. Current Opinion in Immunology, 70, 7-14.
https://doi.org/10.1016/j.coi.2020.12.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133