全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

心力衰竭患者生存预测与用药经济学研究
Survival Prediction and Pharmacoeconomics in Heart Failure Patients

DOI: 10.12677/sa.2025.142046, PP. 180-195

Keywords: 心力衰竭,生存预测,用药策略,机器学习方法,Cox模型
Heart Failure
, Survival Prediction, Medication Strategy, Machine Learning Methods, Cox Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文首先基于Cox生存模型和多种机器学习方法来构建心衰患者的生存预测模型,通过正则化方法识别出对心衰疾病具有重要影响的生物标记特征,并对所构建的五种生存预测模型的预测效果进行了比较分析,发现Cox回归模型和随机森林方法对心衰患者的生存预测效果是最为显著的。考虑到合理的用药策略不仅能够改善患者的结局,还能减轻患者的经济负担,因此本文将识别出的与心衰患者生存时间最为相关的五个风险因素进行了特征排名,依据单变量检验法和机器学习算法的排序结果确定出最为关键的两个特征指标,分别是射血分数和血清肌酐,进而通过构建Markov模型来比较和评估调节射血分数的药物的治疗效果和经济效用。总而言之,人工智能与医疗大数据的不断融合与创新为精准预测心衰患者的生存风险和精准识别影响心衰疾病的关键生物指标提供了可能,结合长期用药带来的经济负担,这些识别出的关键生物指标能为用药策略或治疗策略的制定提供有效的指导。
This article initially constructs a survival prediction model for heart failure patients based on the Cox survival model and various machine learning methods. Through regularization methods, it identifies biomarkers that have a significant impact on heart failure disease. A comparative analysis of the predictive effects of the five constructed survival prediction models reveals that the Cox regression model and the random forest method exhibit the most notable predictive effects for heart failure patients’ survival. Considering that a rational medication strategy can not only improve patient outcomes but also alleviate their economic burden, this study ranks the five risk factors most closely associated with the survival time of heart failure patients. Based on the results of univariate tests and the ranking from machine learning algorithms, the two most critical feature indicators are identified as ejection fraction and serum creatinine. Subsequently, a Markov model is constructed to compare and assess the therapeutic efficacy and economic utility of medications that regulate ejection fraction. In summary, the continuous integration and innovation of artificial intelligence with medical big data provide possibilities for the precise prediction of heart failure patients’ survival risks and the accurate identification of key biological indicators affecting heart failure disease. Combining the economic burden of long-term medication, these identified key biological indicators can offer effective guidance for the formulation of medication or treatment strategies.

References

[1]  中国心衰中心联盟, 苏州工业园区心血管健康研究院, 中国心血管健康联盟. 中国心衰中心工作报告(2021)——心力衰竭患者的诊疗现况[J]. 中国介入心脏病学杂志, 2022, 30(5): 328-336.
[2]  Boughorbel, S., et al. (2022) Applications of Machine Learning for Predicting Heart Failure. In: Sadasivuni, K.K., Ouakad, H.M., Al-Maadeed, S., Yalcin, H.C. and Bahadur, I.B., Eds., Predicting Heart Failure: Invasive, NonInvasive, Machine Learning and Artificial Intelligence Based Methods, Wiley, 171-188.
[3]  蔡佳音, 陈海涛, 王增武. 基于机器学习算法的心力衰竭10年患病风险可解释预测建模分析[J]. 中国心血管病研究, 2024, 22(4): 323-330.
[4]  Tohyama, T., Ide, T., Ikeda, M., Kaku, H., Enzan, N., Matsushima, S., et al. (2021) Machine Learning‐Based Model for Predicting 1 Year Mortality of Hospitalized Patients with Heart Failure. ESC Heart Failure, 8, 4077-4085.
https://doi.org/10.1002/ehf2.13556
[5]  Wang, H., Chai, K., Du, M., Wang, S., Cai, J., Li, Y., et al. (2021) Prevalence and Incidence of Heart Failure among Urban Patients in China: A National Population-Based Analysis. Circulation: Heart Failure, 14, e008406.
https://doi.org/10.1161/circheartfailure.121.008406
[6]  孙桂锋, 刘宇, 李艳, 等. 基层医院慢性心力衰竭治疗现状调查[J]. 中国全科医学, 2018, 21(11): 1280-1284.
[7]  张毅, 魏海涛, 李竹琴. 治疗心力衰竭创新药物-沙库巴曲缬沙坦的客观性分析[J]. 中国循证心血管医学杂志, 2019, 11(0): 636-637, 640.
[8]  Gan, H., Tang, H., Huang, Y., Wang, D., Pu, P. and Zuo, Z. (2021) The ‘Diamond’ Approach to Personalized Drug Treatment of Heart Failure with Reduced Ejection Fraction. Reviews in Cardiovascular Medicine, 22, 573-584.
https://doi.org/10.31083/j.rcm2203069
[9]  Ding, J., Tian, G. and Yuen, K.C. (2015) A New MM Algorithm for Constrained Estimation in the Proportional Hazards Model. Computational Statistics & Data Analysis, 84, 135-151.
https://doi.org/10.1016/j.csda.2014.11.005
[10]  Huang, X., Xu, J. and Tian, G. (2019) On Profile mm Algorithms for Gamma Frailty Survival Models. Statistica Sinica, 29, 895-916.
https://doi.org/10.5705/ss.202016.0516
[11]  Zhang, C. (2010) Nearly Unbiased Variable Selection under Minimax Concave Penalty. The Annals of Statistics, 38, 894-942.
https://doi.org/10.1214/09-aos729
[12]  Fan, J. and Li, R. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360.
https://doi.org/10.1198/016214501753382273
[13]  Schwarz, G. (1978) Estimating the Dimension of a Model. The Annals of Statistics, 6, 461-464.
https://doi.org/10.1214/aos/1176344136
[14]  戚德虎, 康继昌. BP神经网络的设计[J]. 计算机工程与设计, 1988(2): 47-49.
[15]  丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10.
[16]  Ahmad, T., Munir, A., Bhatti, S.H., Aftab, M. and Raza, M.A. (2017) Survival Analysis of Heart Failure Patients: A Case Study. PLOS ONE, 12, e0181001.
https://doi.org/10.1371/journal.pone.0181001
[17]  Markham, A. and Duggan, S. (2021) Vericiguat: First Approval. Drugs, 81, 721-726.
https://doi.org/10.1007/s40265-021-01496-z
[18]  Armstrong, P.W., Pieske, B., Anstrom, K.J., Ezekowitz, J., Hernandez, A.F., Butler, J., et al. (2020) Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 382, 1883-1893.
https://doi.org/10.1056/nejmoa1915928
[19]  McMurray, J.J.V., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008.
[20]  Yao, Y., Zhang, R., An, T., Zhao, X. and Zhang, J. (2020) Cost‐Effectiveness of Adding Dapagliflozin to Standard Treatment for Heart Failure with Reduced Ejection Fraction Patients in China. ESC Heart Failure, 7, 3582-3592.
https://doi.org/10.1002/ehf2.12844
[21]  黎风, 何梅, 母立峰, 等. 维立西呱治疗射血分数降低的心力衰竭的药物经济学研究[J]. 中国药房, 2023, 34(15): 1869-1873.
[22]  国家卫生健康委员会. 中国卫生健康统计年鉴: 2021 [M]. 北京: 中国协和医科大学出版社, 2021: 128.
[23]  Huang, J., Yin, H., Zhang, M., Ni, Q. and Xuan, J. (2017) Understanding the Economic Burden of Heart Failure in China: Impact on Disease Management and Resource Utilization. Journal of Medical Economics, 20, 549-553.
https://doi.org/10.1080/13696998.2017.1297309
[24]  Hong, S., Lee, J., Park, S., Nam, J.H., Song, H.J., Park, S., et al. (2018) The Utility of 5 Hypothetical Health States in Heart Failure Using Time Trade-Off (TTO) and EQ-5D-5L in Korea. Clinical Drug Investigation, 38, 727-736.
https://doi.org/10.1007/s40261-018-0659-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133