全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nematocidal Activities of Protonated Benzimidazolyl Chalcone Using Quantitative Structure-Activity Relationship

DOI: 10.4236/cmb.2025.151001, PP. 1-17

Keywords: Benzimidazolyl-Chalcone (BZC), Nematocidal Activity, Quantitative Structure-Activity Relationship (QSAR), Quantum Descriptors

Full-Text   Cite this paper   Add to My Lib

Abstract:

Benzimidazolyl-Chalcones (BZCs) possess nitrogen heteroatoms making them very active molecules when protonated. In this work we will focus on a series of fourteen (14) substituted BZC molecules. These molecules have been synthesised, characterised and tested for their nematocidal activities. By implementing quantum chemical methods, including density functional theory (DFT) at the MPW1PW91/6-311+G (d, p) level, we can achieve accurate predictions of molecular properties. A QSAR study is conducted to determine a quantitative relationship between nematocidal activity and property information of the BZC compound series. The quantum descriptors namely dipole moment (μ), energy gap (ΔE) and mean valence angle (θNsp), are all obtained by protonation on the sp2 nitrogen, the preferred site of protonation in BZCs. These descriptors are the explanatory and predictive parameters of the nematocidal activity of the studied molecules. This study was conducted using the principal component analysis (PCA), the Multiple Linear Regression (MLR) and the non-linear regression (MNLR) methods. The quantitative models were proposed and the nematocidal activity of BZCs was interpreted based on multivariate statistical analysis. This study shows that PCA, MLR and NMR were used to predict the activities, but compared to the statistical indicators of NMR, we realised that the predictions fulfilled by the latter were more effective. The obtained results suggest that the combination of the proposed descriptors (μ, ΔE, θNsp) could be useful to predict the nematocidal activity of Benz imidazolyl-Chalcones.

References

[1]  Horton, J. (2003) Global Anthelmintic Chemotherapy Programs: Learning from History. Trends in Parasitology, 19, 405-409.
https://doi.org/10.1016/s1471-4922(03)00171-5
[2]  Hotez, P.J., Brindley, P.J., Bethony, J.M., King, C.H., Pearce, E.J. and Jacobson, J. (2008) Helminth Infections: The Great Neglected Tropical Diseases. Journal of Clinical Investigation, 118, 1311-1321.
https://doi.org/10.1172/jci34261
[3]  Geerts, S. and Gryseels, B. (2000) Drug Resistance in Human Helminths: Current Situation and Lessons from Livestock. Clinical Microbiology Reviews, 13, 207-222.
https://doi.org/10.1128/cmr.13.2.207
[4]  Waller, P.J. (2003) The Future of Anthelmintics in Sustainable Parasite Control Programs for Livestock. Helminthologia, 40, 97-102.
[5]  Souness, J.E., Aldous, D. and Sargent, C. (2000) Immunosuppressive and Anti-Inflammatory Effects of Cyclic AMP Phosphodiesterase (PDE) Type 4 Inhibitors. Immunopharmacology, 47, 127-162.
https://doi.org/10.1016/s0162-3109(00)00185-5
[6]  Podunavac-Kuzmanovic, S. and Cvetkovic, D. (2011) Lipophilicity and Antifungal Activity of Some 2-Substituted Benzimidazole Derivatives. Chemical Industry and Chemical Engineering Quarterly, 17, 9-15.
https://doi.org/10.2298/ciceq100329044p
[7]  Kus, C., Ayhan-Kilcigil, G., Eke, B.C. and iŞcan, M. (2004) Synthesis and Antioxidant Properties of Some Novel Benzimidazole Derivatives on Lipid Peroxidation in the Rat Liver. Archives of Pharmacal Research, 27, 156-163.
https://doi.org/10.1007/bf02980099
[8]  Carta, A., Loriga, M., Zanetti, S. and Sechi, L.A. (2003) Quinoxalin-2-Ones: Part 5. Synthesis and Antimicrobial Evaluation of 3-Alkyl-, 3-Halomethyl-and 3-Carboxyethylquinoxaline-2-Ones Variously Substituted on the Benzo-Moiety. Il Farmaco, 58, 1251-1255.
https://doi.org/10.1016/S0014-827X(03)00198-8
[9]  Andriole, V.T. (2000) The Quinolones. In: Andriole, V.T., Ed., The Quinolones, Elsevier, 477-495.
https://doi.org/10.1016/b978-012059517-4/50017-9
[10]  Emami, S., Shafiee, A. and Foroumadi, A. (2005) Quinolones: Recent Structural and Clinical Developments. Iranian Journal of Pharmaceutical Research, 3, 123-136.
[11]  Mertens, A., Mueller-Beckmann, B., Kampe, W., Hoelck, J.P. and Von der Saal, W. (1987) Nonsteroidal Cardiotonics. 1.2-Pyridyl-6, 7-Dihydro-3h, 5h-Pyrrolo[2, 3-F]benzimidazol-6-Ones, a Novel Class of Cardiotonic Agents. Journal of Medicinal Chemistry, 30, 1279-1287.
https://doi.org/10.1021/jm00391a004
[12]  Oprea, T.I. (2005) Chemoinformatics in Drug Discovery. WILEY-VCH Verlag.
[13]  Rekka, E.A. and Kourounakis, P.N. (2008) Chemistry and Molecular Aspects of Drug Design and Action. Taylor & Francis Group
[14]  Ouattara, M., Sissouma, D., Koné, M., Menan, H., Touré, S. and Ouattara, L. (2011) Synthesis and Anthelmintic Activity of Some Hybrid Benzimidazolyl-Chalcone Derivatives. Tropical Journal of Pharmaceutical Research, 10, 767-775.
https://doi.org/10.4314/tjpr.v10i6.10
[15]  Zhao, Y., Tishchenko, O. and Truhlar, D.G. (2005) How Well Can Density Functional Methods Describe Hydrogen Bonds to π Acceptors? The Journal of Physical Chemistry B, 109, 19046-19051.
https://doi.org/10.1021/jp0534434
[16]  Adamo, C. and Barone, V. (1998) Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods without Adjustable Parameters: The mPW and mPW1PW Models. The Journal of Chemical Physics, 108, 664-675.
https://doi.org/10.1063/1.475428
[17]  Lynch, B.J., Fast, P.L., Harris, M. and Truhlar, D.G. (2000) Adiabatic Connection for Kinetics. The Journal of Physical Chemistry A, 104, 4811-4815.
https://doi.org/10.1021/jp000497z
[18]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2004) Gaussian 03, Revision E.01. Gaussian, Inc.
[19]  (2016) Microsoft Excel, “(15.0.4420.1017) MSO (15.0.4420.1017) 64 Bits”. Microsoft Office Professionnel.
[20]  XLSTAT (2014) XLSTAT and Addinsoft are Registered Trademarks of Addinsoft. Copyright Addinsoft.
[21]  Koopmans, T. (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104-113.
https://doi.org/10.1016/s0031-8914(34)90011-2
[22]  Kone, M.G., Affi, S.T., Ziao, N., Bamba, K. and Assanvo, E.F. (2016) Protonation Sites in Benzimidazolyl-Chalcones Molecules: An Ab Initio and DFT Investigation. Computational Chemistry, 4, 65-72.
https://doi.org/10.4236/cc.2016.43006
[23]  Chaltterjee, S., Hadi, A. and Price, B. (2000) Regression Analysis by Examples. Wiley VCH.
[24]  Huynh, T.N.P. (2007) Synthèse et étude des relations structure/activité quantitatives (QSAR/2D) d’analoguesBenzo[c]phénanthridiniques.
https://theses.hal.science/tel-00346332v1/preview/TheseHUYNH.pdf
[25]  Snedecor, G.W. and Cochran, W.G. (1967) Statistical Methods. Oxford and IBH, 381.
[26]  Diudea, M. (2000) QSPR/QSAR Studies for Molecular Descriptors, New York. Nova Science.
[27]  Esposito, E.X., Hopfinger, A.J. and Madura, J.D. (2004) Methods for Applying the Quantitative Structure-Activity Relationship Paradigm. In: Bajorath, J., Ed., Chemoinformatics, Humana Press, 131-213.
https://doi.org/10.1385/1-59259-802-1:131
[28]  Larif, M., Chtita, S., Adad, A., Hmamouchi, R., Bouachrine, M. and Lakhlifi, T. (2013) Predicting Biological Activity of Anticancer Molecules 3-Ary l-4-Hydroxyquinolin-2-(1H)-One by DFT-QSAR Models. Int J, 3, 32-42.
[29]  Hmamouchi, R., Taghki, A., Larif, M., Adad, A., Abdellaoui, A., Bouachrine, M. and Lakhlifi, T. (2013) The Inhibitory Activity of Aldose Reductase of Flavonoid Compounds: Combining DFT and QSAR Calculations. Journal of Chemical and Pharmaceutical Research, 5, 198-209.
[30]  Rücker, C., Rücker, G. and Meringer, M. (2007) Y-Randomization and Its Variants in QSPR/QSAR. Journal of Chemical Information and Modeling, 47, 2345-2357.
https://doi.org/10.1021/ci700157b
[31]  Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T.D., McDowell, R.M. and Gramatica, P. (2003) Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification-and Regression-Based QSARs. Environmental Health Perspectives, 111, 1361-1375.
https://doi.org/10.1289/ehp.5758
[32]  Golbraikh, A. and Tropsha, A. (2002) Beware of q2! Journal of Molecular Graphics and Modelling, 20, 269-276.
https://doi.org/10.1016/s1093-3263(01)00123-1
[33]  Tropsha, A., Gramatica, P. and Gombar, V.K. (2003) The Importance of Being Earnest: Validation Is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR & Combinatorial Science, 22, 69-77.
https://doi.org/10.1002/qsar.200390007
[34]  Roy, P.P. and Roy, K. (2008) On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR & Combinatorial Science, 27, 302-313.
https://doi.org/10.1002/qsar.200710043
[35]  Nikolova-Jeliazkova, N. and Jaworska, J. (2005) An Approach to Determining Applicability Domains for QSAR Group Contribution Models: An Analysis of SRC Kowwin. Alternatives to Laboratory Animals, 33, 461-470.
https://doi.org/10.1177/026119290503300510
[36]  Sahigara, F., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V. and Todeschini, R. (2012) Comparison of Different Approaches to Define the Applicability Domain of QSAR Models. Molecules, 17, 4791-4810.
https://doi.org/10.3390/molecules17054791
[37]  Roy, K., Kar, S. and Das, R.N. (2015) Statistical Methods in QSAR/QSPR. In: Roy, K., Kar, S. and Das, R.N., Eds., A Primer on QSAR/QSPR Modeling, Springer International Publishing, 37-59.
https://doi.org/10.1007/978-3-319-17281-1_2
[38]  Jaworska, J., Nikolova-Jeliazkova, N. and Aldenberg, T. (2005) QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review. Alternatives to Laboratory Animals, 33, 445-459.
https://doi.org/10.1177/026119290503300508
[39]  Ghamali, M., Chtita, S., Bouachrine, M. and Lakhlifi, T. (2016) Méthodologie générale d’une étude RQSA/RQSP. Revue Interdisciplinaire, 1, 4-5.
[40]  Chtita, S., Ghamali, M., Hmamouchi, R., Elidrissi, B., Bourass, M., Larif, M., et al. (2016) Investigation of Antileishmanial Activities of Acridines Derivatives against Promastigotes and Amastigotes Form of Parasites Using Quantitative Structure Activity Relationship Analysis. Advances in Physical Chemistry, 2016, Article ID: 5137289.
https://doi.org/10.1155/2016/5137289
[41]  Asadollahi, T., Dadfarnia, S., Shabani, A.M.H., Ghasemi, J.B. and Sarkhosh, M. (2011) QSAR Models for CXCR2 Receptor Antagonists Based on the Genetic Algorithm for Data Preprocessing Prior to Application of the PLS Linear Regression Method and Design of the New Compounds Using in Silico Virtual Screening. Molecules, 16, 1928-1955.
https://doi.org/10.3390/molecules16031928
[42]  Chtita, S., Larif, M., Ghamali, M., Bouachrine, M. and Lakhlifi, T. (2015) Quantitative Structure-Activity Relationship Studies of Dibenzo[a, d]Cycloalkenimine Derivatives for Non-Competitive Antagonists of N-Methyl-D-Aspartate Based on Density Functional Theory with Electronic and Topological Descriptors. Journal of Taibah University for Science, 9, 143-154.
https://doi.org/10.1016/j.jtusci.2014.10.006
[43]  Gramatica, P. (2007) Principles of QSAR Models Validation: Internal and External. QSAR & Combinatorial Science, 26, 694-701.
https://doi.org/10.1002/qsar.200610151

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133