Laterite is very widespread in the manufacture of raw bricks. The objective of this article is to study the physics and mechanical behaviours of raw earth bricks using a composite material consisting of laterite stabilized with gum Arabic and reinforced with sugarcane bagasse. After the geotechnical tests and the formulation of the bricks, we carried out mechanical tests, which revealed that the highest values of compressive strength are obtained for a contribution of 25% (4.77 Mpa) and 30% (4.75 Mpa) of sugarcane bagasse and those of flexural strength of 25% (3.01 Mpa) and 30% (3.33 Mpa). The bricks are subjected to the tests of linear shrinkage, mass loss by immersion and abrasion, whose values vary respectively between 1.38% at 6%, from 16% to 6% and from 0.17 to 0.23 g/cm2 depending on the addition of sugarcane bagasse from 5% to 30%. These results show that the mechanical and physical behaviors of the laterite-gum Arabic composite are improved by the addition of sugarcane bagasse, thus providing a reduction in mass loss by immersion. The study made it possible to understand that the composite would present explorable thermal potentialities given its linear shrinkage, a sign of the possible presence of pores.
References
[1]
Institut National de la Statistique, des Etudes Economiques et Demographiques (2024) Bulletin menssuel de l’indice National Harmonisé des Prix à la Consommation (INHPC) Tchad-Août. https://www.inseed.td/index.php/component/jdownloads/category/7-documents-et-publications-demographique?Itemid=-1
[2]
Karka, B.R. and Djoui, T. (2019) Modèle de construction d’habitats en terre: Cas d’adobe manuel en Afrique au sud du Sahara. International Journal of Innovation and Applied Studies, 26, 883-887.
[3]
Musbau, K.D., Kolawole, J.T., Babafemi, A.J. and Olalusi, O.B. (2021) Comparative Performance of Limestone Calcined Clay and Limestone Calcined Laterite Blended Cement Concrete. CleanerEngineeringandTechnology, 4, Article ID: 100264. https://doi.org/10.1016/j.clet.2021.100264
[4]
Fall, M., Sarr, D., Cissé, E.M. and Konaté, D. (2021) Physico-Mechanical Characterization of Clay and Laterite Bricks Stabilized or Not with Cement. OpenJournalofCivilEngineering, 11, 60-69. https://doi.org/10.4236/ojce.2021.111004
[5]
Abhilash, H.N., McGregor, F., Millogo, Y., Fabbri, A., Séré, A.D., Aubert, J.E., et al. (2016) Physical, Mechanical and Hygrothermal Properties of Lateritic Building Stones (LBS) from Burkina Faso. ConstructionandBuildingMaterials, 125, 731-741. https://doi.org/10.1016/j.conbuildmat.2016.08.082
[6]
Sánchez Calvillo, A., Alonso Guzmán, E.M., Navarro Ezquerra, A., Ruiz Mendoza, M., Martínez Molina, W., Álvarez Galindo, J.I., et al. (2024) Physical-Chemical, Mechanical and Durability Characterization of Historical Adobe Buildings from the State of Michoacan, Mexico. JournalofBuildingEngineering, 86, Article ID: 108802. https://doi.org/10.1016/j.jobe.2024.108802
[7]
Montenegro, M.A., Boiero, M.L., Valle, L. and Borsarelli, C.D. (2012) Gum Arabic: More than an Edible Emulsifier. In: Johannes, C. and Verbeek, R., Eds., ProductsandApplicationsofBiopolymers, InTech, 953‑978. https://doi.org/10.5772/33783
[8]
Rimbarngaye, A., Mwero, J.N. and Ronoh, E.K. (2021) Effect of Gum Arabic as Partial Replacement of Cement on the Durability Properties of Compressed Laterite Blocks. OpenJournalofCivilEngineering, 11, 398-410. https://doi.org/10.4236/ojce.2021.114023
[9]
Rimbarngaye, A., Mwero, J.N. and Ronoh, E.K. (2022) Effect of Gum Arabic Content on Maximum Dry Density and Optimum Moisture Content of Laterite Soil. Heliyon, 8, e11553. https://doi.org/10.1016/j.heliyon.2022.e11553
[10]
Theodore, T., Mozer, C., Joseph, P., Njie, J., Clins, N., Parfait, Z.E., et al. (2020) Extraction and Characterization of Bagasse Fibres from Sugar Cane (Saccharum officinarum) for Incorporation into a Mortar. OpenJournalofAppliedSciences, 10, 521-533. https://doi.org/10.4236/ojapps.2020.108036
[11]
Sanjuán, R., Anzaldo, J., Vargas, J., Turrado, J. and Patt, R. (2001) Morphological and Chemical Composition of Pith and Fibers from Mexican Sugarcane Bagasse. HolzalsRoh-undWerkstoff, 59, 447-450. https://doi.org/10.1007/s001070100236
[12]
Hugot, E. (1987) La Sucrerie de cannes. 3e Edition, Ed. Tec & Doc.
[13]
Issiakou, M.S., Saiyouri, N., Anguy, Y., Gaborieau, C. and Fabre, R. (2015) Etude des matériaux latéritiques utilisés en construction routière au niger: Méthode d’amélioration. Présenté à Rencontres Universitaires de Génie Civil. https://hal.science/hal-01167576v1
[14]
Bozabe, R.K., Toukourou, C.A., Gbaguidi, G.A. and Hounkonnou, M.N. (2013) Étude des caractéristiques physico-mécaniques des tuiles en micro-béton fabriquées localement à base de la gomme arabique. Afrique Science, 9, 1-15.
[15]
de Casaux, C. and M.D.C.X. (1781) Essai sur l’art de cultiver la canne et d’en extraire le sucre. Par M. D. C. X. Clousier. https://books.google.fr/books?id=bixFAAAAYAAJ
[16]
«NF EN ISO 14688-1», Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-146881/reconnaissance-et-essais-geotechniques-identification-et-classification-des/fa186763/82671
[17]
«NF EN ISO 18134-3», Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-181343/biocombustibles-solides-methodes-de-determination-de-la-teneur-en-humidite-/fa178111/46334
«NF EN ISO 11272», Afnor EDITIONS. https://www.boutique.afnor.org/fr-fr/norme/nf-en-iso-11272/qualite-du-sol-determination-de-la-masse-volumique-apparente-seche/fa179622/43109
«BS EN 12372:2022-TC|31 Mar 2022|BSI Knowledge». https://knowledge.bsigroup.com/products/natural-stone-test-methods-determination-of-flexural-strength-under-concentrated-load-2?version=tracked
[22]
Ali, A., Benelmir, R., Tanguier, J.-L. and Todjiba, A. (2017) Caractéristiques mécaniques de l’argile de Ndjamena stabilisée par la gomme arabique. Afrique Science, 13, 330-341.
[23]
Joshaghani, A. and Moeini, M.A. (2018) Evaluating the Effects of Sugarcane-Bagasse Ash and Rice-Husk Ash on the Mechanical and Durability Properties of Mortar. JournalofMaterialsinCivilEngineering, 30. https://doi.org/10.1061/(asce)mt.1943-5533.0002317
[24]
Cisse, E.H.A.A., Traore, P.T., Ghabo, A., Ndiaye, M. and Diagne, I. (2024) Thermomechanical Characterization of Laterite Matrix Reinforced with Typha Material for Thermal Insulation in Building. MaterialsSciencesandApplications, 15, 450-463. https://doi.org/10.4236/msa.2024.1510030
[25]
Adebola, J.A., Ikumapayi, C.M. and Arum, C. (2023) Effectiveness of Rice Husk and Sugarcane Bagasse Ashes Blended Cement in Improving Properties of Concrete. JournalofMaterialsScienceandChemicalEngineering, 11, Article No. 8. https://doi.org/10.4236/msce.2023.118001
[26]
Bilba, K., Rodier, L., Onésippe, C. and Arsène, M.A. (2015) Thermal and Mechanical Behaviors of Cementitious Composites Reinforced with Bagasse. KeyEngineeringMaterials, 668, 330-340. https://doi.org/10.4028/www.scientific.net/kem.668.330
[27]
Acharya, S.K., Mishra, P.P. and Mehar, S.K. (2008) The Influence of Fiber Treatment on the Performance of Bagasse Fiber-Reinforced Polymer Composite. JournalofReinforcedPlasticsandComposites, 28, 3027-3036. https://doi.org/10.1177/0731684408094221
[28]
Ceti, C.A.M., Honguelet, A.S.D., Ngoro-Elenga, F., Nsongo, T., Eboungabeka, A.D., Elenga, H., et al. (2024) Influence of Sugarcane Bagasse Fibers on the Mechanical Strength and Porosity of Concrete Made with Forspak 42.5 N Cement in the Republic of Congo. AdvancesinMaterialsPhysicsandChemistry, 14, 249-263. https://doi.org/10.4236/ampc.2024.1411018