|
木犀草素及其衍生物抗癌作用的研究进展
|
Abstract:
木犀草素(3',4',5,7-四羟基黄酮)是一种天然的黄酮类化合物,通常以糖苷的形式广泛分布于多种水果和蔬菜中。木犀草素具有显著的抗肿瘤活性,具体作用机制主要包括抑制细胞增殖、促进细胞凋亡、阻止细胞周期进程、抑制细胞迁移与侵袭、抑制血管新生以及诱导自噬等。然而,由于木犀草素的生物利用度较低,这限制了其临床应用。因此,通过化学结构修饰,获得木犀草素的一系列衍生物,提高其生物利用度,保持或增强其原有的抗肿瘤活性已成为研究热点。本文综述了木犀草素及其衍生物的研究进展,旨在探讨其抗肿瘤作用的分子机制,为从天然产物出发进行药物设计和结构优化提供理论依据。
Luteolin (3',4',5,7-tetrahydroxyflavones) are naturally occurring flavonoids, usually in the form of glycosides, widely distributed in a variety of fruits and vegetables. Luteolin have significant anti-tumor activity, and the specific mechanism of action mainly includes inhibition of cell proliferation, promotion of apoptosis, blocking cell cycle progression, inhibition of cell migration and invasion, inhibition of vascular neogenesis, and induction of autophagy. However, due to the low bioavailability of luteolin, this limits its clinical application. Therefore, it has become a research hotspot to obtain a series of derivatives of luteolin through chemical structure modification to improve their bioavailability and maintain or enhance their original antitumor activities. This paper reviews the research progress of luteolin and their derivatives, aiming at exploring the molecular mechanism of their antitumor effects and providing theoretical basis for drug design and structure optimization from natural products.
[1] | Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834 |
[2] | Wang, J.J., Lei, K.F. and Han, F. (2018) Tumor Microenvironment: Recent Advances in Various Cancer Treatments. European Review for Medical and Pharmacological Sciences, 22, 3855-3864. |
[3] | Ross, J.A. and Kasum, C.M. (2002) Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition, 22, 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957 |
[4] | Chan, T.S., Galati, G., Pannala, A.S., Rice-Evans, C. and O'Brien, P.J. (2003) Simultaneous Detection of the Antioxidant and Pro-Oxidant Activity of Dietary Polyphenolics in a Peroxidase System. Free Radical Research, 37, 787-794. https://doi.org/10.1080/1071576031000094899 |
[5] | Neuhouser, M.L. (2004) Review: Dietary Flavonoids and Cancer Risk: Evidence from Human Population Studies. Nutrition and Cancer, 50, 1-7. https://doi.org/10.1207/s15327914nc5001_1 |
[6] | Miean, K.H. and Mohamed, S. (2001) Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. Journal of Agricultural and Food Chemistry, 49, 3106-3112. https://doi.org/10.1021/jf000892m |
[7] | Mencherini, T., Picerno, P., Scesa, C. and Aquino, R. (2007) Triterpene, Antioxidant, and Antimicrobial Compounds from Melissa officinalis. Journal of Natural Products, 70, 1889-1894. https://doi.org/10.1021/np070351s |
[8] | Chagas, M.d.S.S., Behrens, M.D., Moragas-Tellis, C.J., Penedo, G.X.M., Silva, A.R. and Gonçalves-de-Albuquerque, C.F. (2022) Flavonols and Flavones as Potential Anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9966750. https://doi.org/10.1155/2022/9966750 |
[9] | Aziz, N., Kim, M. and Cho, J.Y. (2018) Anti-Inflammatory Effects of Luteolin: A Review of in vitro, in vivo, and in Silico Studies. Journal of Ethnopharmacology, 225, 342-358. https://doi.org/10.1016/j.jep.2018.05.019 |
[10] | Wang, I., Lin, J., Lee, W., Liu, C., Lin, T. and Yang, K. (2023) Baicalein and Luteolin Inhibit Ischemia/Reperfusion-Induced Ferroptosis in Rat Cardiomyocytes. International Journal of Cardiology, 375, 74-86. https://doi.org/10.1016/j.ijcard.2022.12.018 |
[11] | Kou, J., Shi, J., He, Y., Hao, J., Zhang, H., Luo, D., et al. (2021) Luteolin Alleviates Cognitive Impairment in Alzheimer’s Disease Mouse Model via Inhibiting Endoplasmic Reticulum Stress-Dependent Neuroinflammation. Acta Pharmacologica Sinica, 43, 840-849. https://doi.org/10.1038/s41401-021-00702-8 |
[12] | Çetinkaya, M. and Baran, Y. (2023) Therapeutic Potential of Luteolin on Cancer. Vaccines, 11, Article 554. https://pubmed.ncbi.nlm.nih.gov/36992138/ https://doi.org/10.3390/vaccines11030554 |
[13] | Wu, W., Li, K., Zhao, C., Ran, X., Zhang, Y. and Zhang, T. (2022) A Rapid HPLC-MS/MS Method for the Simultaneous Determination of Luteolin, Resveratrol and Their Metabolites in Rat Plasma and Its Application to Pharmacokinetic Interaction Studies. Journal of Chromatography B, 1191, Article 123118. https://doi.org/10.1016/j.jchromb.2022.123118 |
[14] | Lo, S., Leung, E., Fedrizzi, B. and Barker, D. (2021) Syntheses of Mono-Acylated Luteolin Derivatives, Evaluation of Their Antiproliferative and Radical Scavenging Activities and Implications on Their Oral Bioavailability. Scientific Reports, 11, Article No. 12595. https://doi.org/10.1038/s41598-021-92135-w |
[15] | Li, Y., Yang, F., Wang, L., Cao, Z., Han, T., Duan, Z., et al. (2016) Phosphoramidate Protides of Five Flavones and Their Antiproliferative Activity against HepG2 and L-O2 Cell Lines. European Journal of Medicinal Chemistry, 112, 196-208. https://doi.org/10.1016/j.ejmech.2016.02.012 |
[16] | Fischer, F., Zufferey, E., Bourgeois, J., Héritier, J. and Micaux, F. (2011) UV-ABC Screens of Luteolin Derivatives Compared to Edelweiss Extract. Journal of Photochemistry and Photobiology B: Biology, 103, 8-15. https://doi.org/10.1016/j.jphotobiol.2011.01.005 |
[17] | Tsai, H., Chen, M., Hsu, C., Kuan, K., Chang, C., Wang, C., et al. (2022) Luteolin Phosphate Derivatives Generated by Cultivating Bacillus subtilis var. Natto BCRC 80517 with Luteolin. Journal of Agricultural and Food Chemistry, 70, 8738-8745. https://doi.org/10.1021/acs.jafc.2c03524 |
[18] | Osonga, F.J., Le, P., Luther, D., Sakhaee, L. and Sadik, O.A. (2018) Water-Based Synthesis of Gold and Silver Nanoparticles with Cuboidal and Spherical Shapes Using Luteolin Tetraphosphate at Room Temperature. Environmental Science: Nano, 5, 917-932. https://doi.org/10.1039/c8en00042e |
[19] | Zhang, J., Liu, X., Lei, X., Wang, L., Guo, L., Zhao, G., et al. (2010) Discovery and Synthesis of Novel Luteolin Derivatives as DAT Agonists. Bioorganic & Medicinal Chemistry, 18, 7842-7848. https://doi.org/10.1016/j.bmc.2010.09.049 |
[20] | Yamauchi, K., Fujieda, A. and Mitsunaga, T. (2018) Selective Synthesis of 7-O-Substituted Luteolin Derivatives and Their Melanonenesis and Proliferation Inhibitory Activity in B16 Melanoma Cells. Bioorganic & Medicinal Chemistry Letters, 28, 2518-2522. https://doi.org/10.1016/j.bmcl.2018.05.051 |
[21] | Lv, P., Li, H., Xue, J., Shi, L. and Zhu, H. (2009) Synthesis and Biological Evaluation of Novel Luteolin Derivatives as Antibacterial Agents. European Journal of Medicinal Chemistry, 44, 908-914. https://doi.org/10.1016/j.ejmech.2008.01.013 |
[22] | Cheng, N., Yi, W., Wang, Q., Peng, S. and Zou, X. (2014) Synthesis and Α-Glucosidase Inhibitory Activity of Chrysin, Diosmetin, Apigenin, and Luteolin Derivatives. Chinese Chemical Letters, 25, 1094-1098. https://doi.org/10.1016/j.cclet.2014.05.021 |
[23] | 杨为民, 李鲜, 翁稚颖, 等. 一类3′-氨烷氧基-木犀草素衍生物及其制备方法和应用[P]. 中国专利, CN201811575228.8. 2020-12-08 |
[24] | Ravishankar, D., Watson, K.A., Boateng, S.Y., Green, R.J., Greco, F. and Osborn, H.M.I. (2015) Exploring Quercetin and Luteolin Derivatives as Antiangiogenic Agents. European Journal of Medicinal Chemistry, 97, 259-274. https://doi.org/10.1016/j.ejmech.2015.04.056 |
[25] | Li, J.F., Wang, L.S., Bai, H.Q., Yang, B. and Chen, Z.G. (2010) Synthesis and Structure Characterization of Novel Luteolin Derivatives. Chemistry of Natural Compounds, 46, 716-718. https://doi.org/10.1007/s10600-010-9723-1 |
[26] | Reiberger, R., Radilová, K., Kráľ, M., Zima, V., Majer, P., Brynda, J., et al. (2021) Synthesis and in vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors. International Journal of Molecular Sciences, 22, Article 7735. https://doi.org/10.3390/ijms22147735 |
[27] | 任杰, 潘莎莎, 程虹, 等. 木犀草素Mannich碱衍生物的合成及其抗癌活性[J]. 中国新药杂志, 2011, 20(8): 743-747. |
[28] | 周美荣, 李颖, 窦后松, 等. 8-氨甲基取代木犀草素衍生物的合成和抗炎活性研究[J]. 化学研究与应用, 2008, 20(1): 10-15. |
[29] | Ge, X., He, X., Lin, Z., Zhu, Y., Jiang, X., Zhao, L., et al. (2022) 6,8-(1,3-Diaminoguanidine) Luteolin and Its Cr Complex Show Hypoglycemic Activities and Alter Intestinal Microbiota Composition in Type 2 Diabetes Mice. Food & Function, 13, 3572-3589. https://doi.org/10.1039/d2fo00021k |
[30] | Naso, L.G., Lezama, L., Valcarcel, M., Salado, C., Villacé, P., Kortazar, D., et al. (2016) Bovine Serum Albumin Binding, Antioxidant and Anticancer Properties of an Oxidovanadium(IV) Complex with Luteolin. Journal of Inorganic Biochemistry, 157, 80-93. https://doi.org/10.1016/j.jinorgbio.2016.01.021 |
[31] | Juszczak, A.M., Wöelfle, U., Končić, M.Z. and Tomczyk, M. (2022) Skin Cancer, Including Related Pathways and Therapy and the Role of Luteolin Derivatives as Potential Therapeutics. Medicinal Research Reviews, 42, 1423-1462. https://doi.org/10.1002/med.21880 |
[32] | Dong, H., Yang, X., He, J., Cai, S., Xiao, K. and Zhu, L. (2017) Enhanced Antioxidant Activity, Antibacterial Activity and Hypoglycemic Effect of Luteolin by Complexation with Manganese(II) and Its Inhibition Kinetics on Xanthine Oxidase. RSC Advances, 7, 53385-53395. https://doi.org/10.1039/c7ra11036g |
[33] | Dong, X., Zheng, T., Zhang, Z., et al. (2020) Luteolin Reverses OPCML Methylation to Inhibit Proliferation of Breast Cancer MDA-MB-231 Cells. Journal of Southern Medical University, 40, 550-555. |
[34] | Wu, H., Lin, J., Liu, Y., Chen, H., Hsu, K., Lin, S., et al. (2021) Luteolin Suppresses Androgen Receptor-Positive Triple-Negative Breast Cancer Cell Proliferation and Metastasis by Epigenetic Regulation of MMP9 Expression via the Akt/mTOR Signaling Pathway. Phytomedicine, 81, Article 153437. https://doi.org/10.1016/j.phymed.2020.153437 |
[35] | Yao, X., Jiang, W., Yu, D. and Yan, Z. (2019) Luteolin Inhibits Proliferation and Induces Apoptosis of Human Melanoma Cells in vivo and in vitro by Suppressing MMP-2 and MMP-9 through the PI3K/AKT Pathway. Food & Function, 10, 703-712. https://doi.org/10.1039/c8fo02013b |
[36] | Ren, L., Li, Q. and Zhang, Y. (2020) Luteolin Suppresses the Proliferation of Gastric Cancer Cells and Acts in Synergy with Oxaliplatin. BioMed Research International, 2020, Article ID: 9396512. https://doi.org/10.1155/2020/9396512 |
[37] | Matthews, H.K., Bertoli, C. and de Bruin, R.A.M. (2021) Cell Cycle Control in Cancer. Nature Reviews Molecular Cell Biology, 23, 74-88. https://doi.org/10.1038/s41580-021-00404-3 |
[38] | Casagrande, F. and Darbon, J. (2001) Effects of Structurally Related Flavonoids on Cell Cycle Progression of Human Melanoma Cells: Regulation of Cyclin-Dependent Kinases CDK2 and CDK1. Biochemical Pharmacology, 61, 1205-1215. https://doi.org/10.1016/s0006-2952(01)00583-4 |
[39] | Huang, L., Jin, K. and Lan, H. (2019) Luteolin Inhibits Cell Cycle Progression and Induces Apoptosis of Breast Cancer Cells through Downregulation of Human Telomerase Reverse Transcriptase. Oncology Letters, 17, 3842-3850. https://doi.org/10.3892/ol.2019.10052 |
[40] | Lim, D.Y., Jeong, Y., Tyner, A.L. and Park, J.H.Y. (2007) Induction of Cell Cycle Arrest and Apoptosis in HT-29 Human Colon Cancer Cells by the Dietary Compound Luteolin. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, G66-G75. https://doi.org/10.1152/ajpgi.00248.2006 |
[41] | Chen, Z., Zhang, B., Gao, F. and Shi, R. (2017) Modulation of G2/M Cell Cycle Arrest and Apoptosis by Luteolin in Human Colon Cancer Cells and Xenografts. Oncology Letters, 15, 1559-1565. https://doi.org/10.3892/ol.2017.7475 |
[42] | Tuli, H.S., Tuorkey, M.J., Thakral, F., Sak, K., Kumar, M., Sharma, A.K., et al. (2019) Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Frontiers in Pharmacology, 10, Article 1336. https://doi.org/10.3389/fphar.2019.01336 |
[43] | Ma, J., Pan, Z., Du, H., Chen, X., Zhu, X., Hao, W., et al. (2023) Luteolin Induces Apoptosis by Impairing Mitochondrial Function and Targeting the Intrinsic Apoptosis Pathway in Gastric Cancer Cells. Oncology Letters, 26, Article No. 327. https://doi.org/10.3892/ol.2023.13913 |
[44] | Lu, X., Li, Y., Li, X. and Aisa, H.A. (2017) Luteolin Induces Apoptosis in vitro through Suppressing the MAPK and PI3K Signaling Pathways in Gastric Cancer. Oncology Letters, 14, 1993-2000. https://doi.org/10.3892/ol.2017.6380 |
[45] | Wu, H., Liu, Y., Hsu, K., Wang, Y., Chan, Y., Chen, Y., et al. (2020) MLL3 Induced by Luteolin Causes Apoptosis in Tamoxifen-Resistant Breast Cancer Cells through H3K4 Monomethylation and Suppression of the PI3K/AKT/mTOR Pathway. The American Journal of Chinese Medicine, 48, 1221-1241. https://doi.org/10.1142/s0192415x20500603 |
[46] | Wang, Q., Wang, H., Jia, Y., Pan, H. and Ding, H. (2017) Luteolin Induces Apoptosis by ROS/ER Stress and Mitochondrial Dysfunction in Gliomablastoma. Cancer Chemotherapy and Pharmacology, 79, 1031-1041. https://doi.org/10.1007/s00280-017-3299-4 |
[47] | Na, X., Li, L., Liu, D., He, J., Zhang, L. and Zhou, Y. (2024) Natural Products Targeting Ferroptosis Pathways in Cancer Therapy (Review). Oncology Reports, 52, Article No. 123. https://doi.org/10.3892/or.2024.8782 |
[48] | Han, S., Lin, F., Qi, Y., Liu, C., Zhou, L., Xia, Y., et al. (2022) HO-1 Contributes to Luteolin-Triggered Ferroptosis in Clear Cell Renal Cell Carcinoma via Increasing the Labile Iron Pool and Promoting Lipid Peroxidation. Oxidative Medicine and Cellular Longevity, 2022, Article No. 3846217. https://doi.org/10.1155/2022/3846217 |
[49] | Zheng, Y., Li, L., Chen, H., Zheng, Y., Tan, X., Zhang, G., et al. (2023) Luteolin Exhibits Synergistic Therapeutic Efficacy with Erastin to Induce Ferroptosis in Colon Cancer Cells through the HIC1-Mediated Inhibition of GPX4 Expression. Free Radical Biology and Medicine, 208, 530-544. https://doi.org/10.1016/j.freeradbiomed.2023.09.014 |
[50] | Fu, W., Xu, L., Chen, Y., Zhang, Z., Chen, S., Li, Q., et al. (2023) Luteolin Induces Ferroptosis in Prostate Cancer Cells by Promoting TFEB Nuclear Translocation and Increasing Ferritinophagy. The Prostate, 84, 223-236. https://doi.org/10.1002/pros.24642 |
[51] | Parzych, K.R. and Klionsky, D.J. (2014) An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxidants & Redox Signaling, 20, 460-473. https://doi.org/10.1089/ars.2013.5371 |
[52] | Potočnjak, I., Šimić, L., Gobin, I., Vukelić, I. and Domitrović, R. (2020) Antitumor Activity of Luteolin in Human Colon Cancer SW620 Cells Is Mediated by the ERK/FOXO3a Signaling Pathway. Toxicology in vitro, 66, Article 104852. https://doi.org/10.1016/j.tiv.2020.104852 |
[53] | Lee, Y. and Kwon, Y.H. (2019) Regulation of Apoptosis and Autophagy by Luteolin in Human Hepatocellular Cancer Hep3B Cells. Biochemical and Biophysical Research Communications, 517, 617-622. https://doi.org/10.1016/j.bbrc.2019.07.073 |
[54] | Masraksa, W., Tanasawet, S., Hutamekalin, P., Wongtawatchai, T. and Sukketsiri, W. (2020) Luteolin Attenuates Migration and Invasion of Lung Cancer Cells via Suppressing Focal Adhesion Kinase and Non-Receptor Tyrosine Kinase Signaling Pathway. Nutrition Research and Practice, 14, 127-133. https://doi.org/10.4162/nrp.2020.14.2.127 |
[55] | Feng, J., Zheng, T., Hou, Z., Lv, C., Xue, A., Han, T., et al. (2020) Luteolin, an Aryl Hydrocarbon Receptor Ligand, Suppresses Tumor Metastasis in vitro and in vivo. Oncology Reports, 44, 2231-2240. https://doi.org/10.3892/or.2020.7781 |
[56] | Aljohani, H., Khodier, A.E. and Al-Gayyar, M.M. (2023) Antitumor Activity of Luteolin against Ehrlich Solid Carcinoma in Rats via Blocking Wnt/β-Catenin/SMAD4 Pathway. Cureus, 15, e39789. https://doi.org/10.7759/cureus.39789 |
[57] | Lee, W., Wu, L., Chen, W., Wang, C. and Tseng, T. (2006) Inhibitory Effect of Luteolin on Hepatocyte Growth Factor/Scatter Factor-Induced HepG2 Cell Invasion Involving Both MAPK/ERKs and PI3K-AKT Pathways. Chemico-Biological Interactions, 160, 123-133. https://doi.org/10.1016/j.cbi.2006.01.002 |
[58] | Pratheeshkumar, P., Son, Y., Budhraja, A., Wang, X., Ding, S., Wang, L., et al. (2012) Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis. PLOS ONE, 7, e52279. https://doi.org/10.1371/journal.pone.0052279 |
[59] | Zang, M., Hu, L., Zhang, B., Zhu, Z., Li, J., Zhu, Z., et al. (2017) Luteolin Suppresses Angiogenesis and Vasculogenic Mimicry Formation through Inhibiting Notch1-VEGF Signaling in Gastric Cancer. Biochemical and Biophysical Research Communications, 490, 913-919. https://doi.org/10.1016/j.bbrc.2017.06.140 |
[60] | Li, Z., Ge, H., Xie, Y., Zhang, Y., Zhao, X., Sun, W., et al. (2023) Luteolin Inhibits Angiogenesis and Enhances Radiotherapy Sensitivity of Laryngeal Cancer via Downregulating Integrin Β1. Tissue and Cell, 85, Article 102235. https://doi.org/10.1016/j.tice.2023.102235 |
[61] | Lopez-Lazaro, M. (2009) Distribution and Biological Activities of the Flavonoid Luteolin. Mini-Reviews in Medicinal Chemistry, 9, 31-59. https://doi.org/10.2174/138955709787001712 |
[62] | Caporali, S., De Stefano, A., Calabrese, C., Giovannelli, A., Pieri, M., Savini, I., et al. (2022) Anti-Inflammatory and Active Biological Properties of the Plant-Derived Bioactive Compounds Luteolin and Luteolin 7-Glucoside. Nutrients, 14, Article 1155. https://doi.org/10.3390/nu14061155 |
[63] | Ho, H., Chen, P., Lo, Y., Lin, C., Chuang, Y., Hsieh, M., et al. (2021) Luteolin‐7‐O‐Glucoside Inhibits Cell Proliferation and Modulates Apoptosis through the AKT Signaling Pathway in Human Nasopharyngeal Carcinoma. Environmental Toxicology, 36, 2013-2024. https://doi.org/10.1002/tox.23319 |
[64] | Hwang, Y., Lee, E., Kim, H. and Hwang, K. (2013) Molecular Mechanisms of Luteolin-7-O-Glucoside-Induced Growth Inhibition on Human Liver Cancer Cells: G2/M Cell Cycle Arrest and Caspase-Independent Apoptotic Signaling Pathways. BMB Reports, 46, 611-616. https://doi.org/10.5483/bmbrep.2013.46.12.133 |
[65] | Velmurugan, B.K., Lin, J., Mahalakshmi, B., Chuang, Y., Lin, C., Lo, Y., et al. (2020) Luteolin-7-O-Glucoside Inhibits Oral Cancer Cell Migration and Invasion by Regulating Matrix Metalloproteinase-2 Expression and Extracellular Signal-Regulated Kinase Pathway. Biomolecules, 10, Article 502. https://doi.org/10.3390/biom10040502 |