全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

集成深度学习模型在地震烈度预测中的应用——以意大利数据为例
Application of an Ensemble Deep Learning Model in Earthquake Intensity Prediction—A Case Study Using Italian Data

DOI: 10.12677/mos.2025.142181, PP. 619-630

Keywords: 地震烈度预测,深度学习,集成学习,意大利地震数据集
Earthquake Intensity Prediction
, Deep Learning, Ensemble Learning, The Italian Seismic Dataset

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究探讨了一种基于深度学习的集成策略来预测地震烈度的方法。通过采用意大利地震数据集(INSTANCE)的数据,研究结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和全连接网络(FCNN),并运用Bagging算法以提高模型的泛化能力和预测精度。实验结果表明,本研究所提出的集成模型能够有效地预测地震烈度,并对不同烈度级别进行了准确区分。
This study explores a deep learning-based ensemble strategy for predicting earthquake intensity. Using data from the Italian earthquake dataset (INSTANCE), the research integrates Convolutional Neural Networks (CNN), Long Short-Term Memory networks (LSTM), and Fully Connected Neural Networks (FCNN), while employing the Bagging algorithm to enhance the model’s generalization ability and prediction accuracy. The experimental results demonstrate that the proposed ensemble model effectively predicts earthquake intensity and accurately distinguishes between different intensity levels.

References

[1]  金星, 张红才, 李军, 等. 地震仪器烈度标准初步研究[J]. 地球物理学进展, 2013, 28(5): 2336-2351.
[2]  马强, 李水龙, 李山有, 等. 不同地震动参数与地震烈度的相关性分析[J]. 地震工程与工程振动, 2014, 34(4): 83-92.
[3]  李亮, 李山有, 纪忠华, 等. 仪器烈度计算方法研究[J]. 震灾防御技术, 2018, 13(4): 801-809.
[4]  Mousavi, S.M., Sheng, Y., Zhu, W. and Beroza, G.C. (2019) Stanford Earthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7, 179464-179476.
https://doi.org/10.1109/access.2019.2947848

[5]  Magrini, F., Jozinović, D., Cammarano, F., Michelini, A. and Boschi, L. (2020) Local Earthquakes Detection: A Benchmark Dataset of 3-Component Seismograms Built on a Global Scale. Artificial Intelligence in Geosciences, 1, 1-10.
https://doi.org/10.1016/j.aiig.2020.04.001

[6]  Yeck, W.L. and Patton, J. (2021) Waveform Data and Metadata Used to National Earthquake Information Center Deep-Learning Models.
[7]  Yeck, W.L. (2020) Leveraging Deep Learning in Global 24/7 Real‐Time Earthquake Monitoring at the National Earthquake Information Center. Seismological Research Letters, 92, 469-480.
[8]  Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D. and Lauciani, V. (2021) INSTANCE—The Italian Seismic Dataset for Machine Learning. Earth System Science Data, 13, 5509-5544.
https://doi.org/10.5194/essd-13-5509-2021

[9]  Mousavi, S.M., Zhu, W., Sheng, Y. and Beroza, G.C. (2019) CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection. Scientific Reports, 9, Article No. 10267.
https://doi.org/10.1038/s41598-019-45748-1

[10]  Mousavi, S.M., Ellsworth, W.L., Zhu, W., Chuang, L.Y. and Beroza, G.C. (2020) Earthquake Transformer—An Attentive Deep-Learning Model for Simultaneous Earthquake Detection and Phase Picking. Nature Communications, 11, Article No. 3952.
https://doi.org/10.1038/s41467-020-17591-w

[11]  Mousavi, S.M. and Beroza, G.C. (2020) A Machine-Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters, 47, e2019GL085976.
https://doi.org/10.1029/2019gl085976

[12]  Mousavi, S.M. and Beroza, G.C. (2020) Bayesian-Deep-Learning Estimation of Earthquake Location from Single-Station Observations. IEEE Transactions on Geoscience and Remote Sensing, 58, 8211-8224.
https://doi.org/10.1109/tgrs.2020.2988770

[13]  Nicolis, O., Plaza, F. and Salas, R. (2021) Prediction of Intensity and Location of Seismic Events Using Deep Learning. Spatial Statistics, 42, Article 100442.
https://doi.org/10.1016/j.spasta.2020.100442

[14]  Ristea, N. and Radoi, A. (2022) Complex Neural Networks for Estimating Epicentral Distance, Depth, and Magnitude of Seismic Waves. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
https://doi.org/10.1109/lgrs.2021.3059422

[15]  Abdalzaher, M.S. and Soliman, M.S. (2023) Seismic Intensity Estimation for Earthquake Early Warning Using Optimized Machine Learning Model. IEEE Journals & Magazine, 61, 1-11.
[16]  Wald, D.J., Quitoriano, V., Heaton, T.H. and Kanamori, H. (1999) Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15, 557-564.
https://doi.org/10.1193/1.1586058

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133