|
R717在微通道散热器内流动沸腾特性数值研究
|
Abstract:
针对空间应用的热控任务,设计了一款矩形微通道散热器(MCHS),以R717为工质,通过数值模拟,研究了微通道中的流动沸腾过程,重点研究了气泡生长与融合过程中的关键影响因素,深入探讨微通道内流动沸腾的流型演化,在此基础上探究其对沸腾过程中压降、换热特性的影响。结果表明:微通道中发生沸腾换热时出现的流型主要可分为泡状流、段塞流、环状流、雾状流,质量流速增大、热流密度降低、提高入口过冷度均能够延缓流型的发展。在相同热流密度下,提高质量流速对于降低壁温、提高壁面均温性有显著影响,但会随着热流密度降低而衰减。较高的热流密度与质量流速之间的匹配性较差,容易产生局部干涸现象造成壁温急剧升高。
A rectangular microchannel heat sink (MCHS) was designed for the thermal control task of space application, using R717 as the working mass. Through numerical simulation, the flow boiling process in the microchannel was investigated, focusing on the key influencing factors in the growth and fusion of bubbles, and the evolution of the flow pattern of the flow boiling in the microchannel was deeply explored, based on which its influence on the pressure drop and the heat transfer characteristics during the boiling process was investigated. The results show that the flow patterns occurring in the microchannel when boiling heat transfer occurs can be mainly categorized into vesicular flow, segmented plug flow, annular flow, and foggy flow, and that increasing the mass flow rate, decreasing the density of heat flow, and increasing the inlet subcooling degree can retard the development of the flow patterns. At the same heat flow density, increasing the mass flow rate has a significant effect on lowering the wall temperature and increasing the wall homogeneity, but it will be attenuated with the decrease of heat flow density. The match between higher heat flow density and mass flow rate is poor, and it is easy to produce local drying phenomenon resulting in a sharp increase in wall temperature.
[1] | Harirchian, T. and Garimella, S.V. (2009) Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels. International Journal of Multiphase Flow, 35, 349-362. https://doi.org/10.1016/j.ijmultiphaseflow.2009.01.003 |
[2] | 刘芳, 杨志鹏, 袁卫星, 等. 微小通道换热器内流动沸腾换热与压降特性[J]. 工程热物理学报, 2023, 44(8): 2240-2249. |
[3] | 谢鸣宇, 罗小平, 胡丽琴. 微通道内R22制冷剂流动沸腾的压降特性[J]. 化学工程, 2016, 4(1): 8-42+52. |
[4] | 张浩, 曹泽瀚, 梅淏汉, 等. R32制冷剂在小管径水平管内的沸腾换热与阻力特性实验研究[J]. 西安交通大学学报, 2023, 57(3): 58-67. |
[5] | Da Silva, J.D. and Ribatski, G. (2012) Experimental Two-Phase Frictional Pressure Drop of R245fa and R134a IN A 1.1 mm ID Tube in 3rd Brazilian Meeting of Nucleated Boiling, Condensation and Multiphase-Flow. Curitiba, Brazil. |
[6] | Qi, S.L., Zhang, P., Wang, R.Z. and Xu, L.X. (2007) Flow Boiling of Liquid Nitrogen in Micro-Tubes: Part I—The Onset of Nucleate Boiling, Two-Phase Flow Instability and Two-Phase Flow Pressure Drop. International Journal of Heat and Mass Transfer, 50, 4999-5016. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.018 |
[7] | Consolini, L. and Thome, J.R. (2010) A Heat Transfer Model for Evaporation of Coalescing Bubbles in Micro-Channel Flow. International Journal of Heat and Fluid Flow, 31, 115-125. https://doi.org/10.1016/j.ijheatfluidflow.2009.10.005 |
[8] | Huang, Y., Chen, K., Tang, X. and Fang, Y. (2024) Two-Phase Flow Oscillation and Distribution in Parallel Channels during R1233zd(e) Subcooled Flow Boiling: A Numerical Study. International Journal of Heat and Mass Transfer, 218, Article 124778. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124778 |
[9] | 郭雯. 微通道流动沸腾换热特性及成核机理研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2020. |
[10] | Lee, W.H. (1980) A Pressure Iteration Scheme for Two-Phase Flow Modeling. Multiphase Transport Fundamentals, Reactor Safety, Applications, 1, 407-431. |
[11] | De Schepper, S.C.K., Heynderickx, G.J. and Marin, G.B. (2009) Modeling the Evaporation of a Hydrocarbon Feedstock in the Convection Section of a Steam Cracker. Computers & Chemical Engineering, 33, 122-132. https://doi.org/10.1016/j.compchemeng.2008.07.013 |
[12] | Lenhard, R., Malcho, M. and Jandačka, J. (2018) Modelling of Heat Transfer in the Evaporator and Condenser of the Working Fluid in the Heat Pipe. Heat Transfer Engineering, 40, 215-226. https://doi.org/10.1080/01457632.2018.1426225 |
[13] | Brackbill, J.U., Kothe, D.B. and Zemach, C. (1992) A Continuum Method for Modeling Surface Tension. Journal of Computational Physics, 100, 335-354. https://doi.org/10.1016/0021-9991(92)90240-y |
[14] | 黄秀杰. R32在微细通道内流动沸腾特性的实验及数值研究[D]: [硕士学位论文]. 北京: 清华大学, 2013. |
[15] | 郭雷. 微细通道流动沸腾换热机理及实验研究[D]: [博士学位论文]. 济南: 山东大学, 2011. |
[16] | Al-Zaidi, A.H., Mahmoud, M.M. and Karayiannis, T.G. (2019) Flow Boiling of HFE-7100 in Microchannels: Experimental Study and Comparison with Correlations. International Journal of Heat and Mass Transfer, 140, 100-128. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.095 |
[17] | 张昭, 方奕栋, 徐丹, 等. R1233zd(E)在平行小通道中的流动沸腾可视化研究[J]. 制冷学报, 2023, 44(1): 136-141+166. |
[18] | 李琳, 刘存良, 杨祺, 等. 微细管道内R141b沸腾气液两相流动与换热特性数值仿真[J]. 推进技术, 2018, 39(4): 802-809. |
[19] | Ong, C.L. and Thome, J.R. (2009) Flow Boiling Heat Transfer of R134a, R236fa and R245fa in a Horizontal 1.030mm Circular Channel. Experimental Thermal and Fluid Science, 33, 651-663. https://doi.org/10.1016/j.expthermflusci.2009.01.002 |