|
阿尔茨海默病早期诊断的潜在生物标记物
|
Abstract:
阿尔茨海默病(Alzheimer’s Disease, AD)是老年人群中最常见的痴呆类型,其特点是认知功能下降、记忆力下降、严重者出现语言障碍,最终丧失独立生活能力,给患者和社会带来了沉重的负担。其潜在病理改变在症状出现前的几十年就已经存在,因此AD的早诊断、早干预对于高风险人群具有重要意义,能够大幅度提高患者预后并有效改善生活质量。本文将回顾当前AD在生物标记物方面的相关前沿文章,通过综述其研究进展寻找潜在标记物,为AD的早期诊断提供帮助。
Alzheimer’s Disease (AD) is the most common type of dementia among the elderly, characterized by cognitive decline, memory impairment, and, in severe cases, language disorders, ultimately leading to the loss of independent living abilities. This condition imposes a substantial burden on both patients and society. The underlying pathological changes of AD may exist for decades before the onset of clinical symptoms. Therefore, early diagnosis and intervention are of significant importance for high-risk populations, as they can substantially improve patient prognosis and quality of life. This paper will review the current cutting-edge articles related to AD in terms of biomarkers, search for potential markers for early diagnosis of AD by summarizing their research progress, and provide insights into the early diagnosis of Alzheimer’s disease.
[1] | Georges, J., Miller, O. and Bintener, C. (2020) Estimating the Prevalence of Dementia in Europe. Alzheimer Europe. https://doi.org/10.13140/RG.2.2.16880.81923 |
[2] | Farías, G., Pérez, P., Slachevsky, A. and Maccioni, R.B. (2012) Platelet Tau Pattern Correlates with Cognitive Status in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 31, 65-69. https://doi.org/10.3233/jad-2012-120304 |
[3] | Golde, T.E., DeKosky, S.T. and Galasko, D. (2018) Alzheimer’s Disease: The Right Drug, the Right Time. Science, 362, 1250-1251. https://doi.org/10.1126/science.aau0437 |
[4] | Tarawneh, R., Kasper, R.S., Sanford, J., Phuah, C., Hassenstab, J. and Cruchaga, C. (2022) Vascular Endothelial‐Cadherin as a Marker of Endothelial Injury in Preclinical Alzheimer Disease. Annals of Clinical and Translational Neurology, 9, 1926-1940. https://doi.org/10.1002/acn3.51685 |
[5] | Li, W., Chen, Z., Chin, I., Chen, Z. and Dai, H. (2018) The Role of Ve-Cadherin in Blood-Brain Barrier Integrity under Central Nervous System Pathological Conditions. Current Neuropharmacology, 16, 1375-1384. https://doi.org/10.2174/1570159x16666180222164809 |
[6] | Bennett, R.E., Robbins, A.B., Hu, M., Cao, X., Betensky, R.A., Clark, T., et al. (2018) Tau Induces Blood Vessel Abnormalities and Angiogenesis-Related Gene Expression in P301L Transgenic Mice and Human Alzheimer’s Disease. Proceedings of the National Academy of Sciences, 115, E1289-E1298. https://doi.org/10.1073/pnas.1710329115 |
[7] | Grammas, P. (2011) Neurovascular Dysfunction, Inflammation and Endothelial Activation: Implications for the Pathogenesis of Alzheimer’s Disease. Journal of Neuroinflammation, 8, Article No. 26. https://doi.org/10.1186/1742-2094-8-26 |
[8] | Yamazaki, Y., Shinohara, M., Shinohara, M., Yamazaki, A., Murray, M.E., Liesinger, A.M., et al. (2019) Selective Loss of Cortical Endothelial Tight Junction Proteins during Alzheimer’s Disease Progression. Brain, 142, 1077-1092. https://doi.org/10.1093/brain/awz011 |
[9] | Ottoy, J., Ozzoude, M., Zukotynski, K., Adamo, S.M., Scott, C.J.M., Gaudet, V., et al. (2021) Amyloid‐Independent Vascular Contributions to Cortical Atrophy and Cognition in a Multi‐Center Mixed Cohort with Low to Severe Small Vessel Disease. Alzheimer’s & Dementia, 17, e056326. https://doi.org/10.1002/alz.056326 |
[10] | Teunissen, C.E., Verberk, I.M.W., Thijssen, E.H., Vermunt, L., Hansson, O., Zetterberg, H., et al. (2022) Blood-Based Biomarkers for Alzheimer’s Disease: Towards Clinical Implementation. The Lancet Neurology, 21, 66-77. https://doi.org/10.1016/s1474-4422(21)00361-6 |
[11] | Benedet, A.L., Milà-Alomà, M., Vrillon, A., Ashton, N.J., Pascoal, T.A., Lussier, F., et al. (2021) Differences between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels across the Alzheimer Disease Continuum. JAMA Neurology, 78, 1471-1483. https://doi.org/10.1001/jamaneurol.2021.3671 |
[12] | Oeckl, P., Halbgebauer, S., Anderl-Straub, S., Steinacker, P., Huss, A.M., Neugebauer, H., et al. (2018) Glial Fibrillary Acidic Protein in Serum Is Increased in Alzheimer’s Disease and Correlates with Cognitive Impairment. Journal of Alzheimer’s Disease, 67, 481-488. https://doi.org/10.3233/jad-180325 |
[13] | 于震维. 肠道菌群与阿尔茨海默病的相关性研究进展[J]. 科技视界, 2023(19): 42-43. |
[14] | Chang, L.Y.L., Lowe, J., Ardiles, A., Lim, J., Grey, A.C., Robertson, K., et al. (2013) Alzheimer’s Disease in the Human Eye. Clinical Tests That Identify Ocular and Visual Information Processing Deficit as Biomarkers. Alzheimer’s & Dementia, 10, 251-261. https://doi.org/10.1016/j.jalz.2013.06.004 |
[15] | Wilcockson, T.D.W., Mardanbegi, D., Xia, B., Taylor, S., Sawyer, P., Gellersen, H.W., et al. (2019) Abnormalities of Saccadic Eye Movements in Dementia Due to Alzheimer’s Disease and Mild Cognitive Impairment. Aging, 11, 5389-5398. https://doi.org/10.18632/aging.102118 |
[16] | Lyons, B.E., Austin, D., Seelye, A., Petersen, J., Yeargers, J., Riley, T., et al. (2015) Pervasive Computing Technologies to Continuously Assess Alzheimer’s Disease Progression and Intervention Efficacy. Frontiers in Aging Neuroscience, 7, Article 102. |
[17] | Buracchio, T., Dodge, H.H., Howieson, D., Wasserman, D. and Kaye, J. (2010) The Trajectory of Gait Speed Preceding Mild Cognitive Impairment. Archives of Neurology, 67, 980-986. https://doi.org/10.1001/archneurol.2010.159 |
[18] | Case, M.A., Burwick, H.A., Volpp, K.G. and Patel, M.S. (2015) Accuracy of Smartphone Applications and Wearable Devices for Tracking Physical Activity Data. JAMA, 313, 625-626. https://doi.org/10.1001/jama.2014.17841 |
[19] | Lim, A.S.P., Kowgier, M., Yu, L., Buchman, A.S. and Bennett, D.A. (2013) Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep, 36, 1027-1032. https://doi.org/10.5665/sleep.2802 |
[20] | Lujan, M.R., Perez-Pozuelo, I. and Grandner, M.A. (2021) Past, Present, and Future of Multisensory Wearable Technology to Monitor Sleep and Circadian Rhythms. Frontiers in Digital Health, 3, Article 721919. https://doi.org/10.3389/fdgth.2021.721919 |