全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细胞焦亡在正畸牙移动中的研究进展
Research Progress on Cell Pyroptosis in Orthodontic Tooth Movement

DOI: 10.12677/md.2025.151015, PP. 107-112

Keywords: 细胞死亡,正畸牙移动,细胞焦亡
Cell Death
, Orthodontic Tooth Movement, Cell Pyroptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

错颌畸形是世界卫生组织认定的三大口腔疾病之一,并且在我国的发病率逐年上升。作为一种常见的口腔健康问题,错颌畸形不仅会影响患者的颌面功能和面部外观,还可能对其心理健康产生长期且深远的影响。正因为如此,越来越多的患者选择通过正畸治疗来改善这一问题。在正畸治疗过程中,施加的机械力会引发牙周组织中的炎症级联反应,进而促使牙周膜和牙槽骨的改建与重塑,从而实现牙齿的移动。免疫系统在这一复杂的生物学过程中发挥着关键作用,是正畸牙移动和牙槽骨改建中不可缺少的调节因子。细胞焦亡作为一种炎性程序性细胞死亡方式,特点是通过炎症小体的激活以及Caspase-1或Caspase-4/5的参与,其在维持组织稳态和激活炎症反应中起着至关重要的作用。然而关于细胞焦亡与正畸牙移动的具体联系尚未被完全阐明,因此,文章对细胞焦亡与正畸牙移动之间的关系及潜在机制进行综述,以期为相关基础研究和临床实践提供具有指导意义的参考,并为患者带来更为精确和有效的干预手段。
Malocclusion is one of the three major oral diseases recognized by the World Health Organization, and the incidence rate is increasing yearly in China. As a common oral health problem, malocclusion not only affects the patient’s facial function and appearance but may also have long-term and profound effects on their mental health. Because of this, more and more patients are choosing orthodontic treatment to improve this problem. During orthodontic treatment, the applied mechanical force can trigger an inflammatory cascade reaction in the periodontal tissue, promoting the remodeling and reconstruction of the periodontal membrane and alveolar bone, thereby achieving tooth movement. The immune system plays a crucial role in this complex biological process and is an indispensable regulatory factor in orthodontic tooth movement and alveolar bone remodeling. Cellular pyroptosis, as an inflammatory programmed cell death mode, is characterized by the activation of inflammasomes and the involvement of Caspase-1 or Caspase-4/5, playing a crucial role in maintaining tissue homeostasis and activating inflammatory responses. However, the specific relationship between cell necrosis and orthodontic tooth movement has not been fully elucidated. Therefore, this article reviews the relationship and potential mechanisms between cell necrosis and orthodontic tooth movement to provide guiding references for related basic research and clinical practice and to bring more precise and effective intervention methods for patients.

References

[1]  Zhou, C., Duan, P., He, H., Song, J., Hu, M., Liu, Y., et al. (2024) Expert Consensus on Pediatric Orthodontic Therapies of Malocclusions in Children. International Journal of Oral Science, 16, Article No. 32.
https://doi.org/10.1038/s41368-024-00299-8
[2]  Krishnan, V. and Davidovitch, Z. (2006) Cellular, Molecular, and Tissue-Level Reactions to Orthodontic Force. American Journal of Orthodontics and Dentofacial Orthopedics, 129, 469.e1-469.e32.
https://doi.org/10.1016/j.ajodo.2005.10.007
[3]  Li, Y., Jacox, L.A., Little, S.H. and Ko, C. (2018) Orthodontic Tooth Movement: The Biology and Clinical Implications. The Kaohsiung Journal of Medical Sciences, 34, 207-214.
https://doi.org/10.1016/j.kjms.2018.01.007
[4]  Pilon, J.J.G.M., Kuijpers-Jagtman, A.M. and Maltha, J.C. (1996) Magnitude of Orthodontic Forces and Rate of Bodily Tooth Movement. an Experimental Study. American Journal of Orthodontics and Dentofacial Orthopedics, 110, 16-23.
https://doi.org/10.1016/s0889-5406(96)70082-3
[5]  Alikhani, M., Sangsuwon, C., Alansari, S., Nervina, J.M. and Teixeira, C.C. (2018) Biphasic Theory: Breakthrough Understanding of Tooth Movement. Journal of the World Federation of Orthodontists, 7, 82-88.
https://doi.org/10.1016/j.ejwf.2018.08.001
[6]  Hao, W. and Feng, C. (2023) Research Progress on Pyroptosis and Its Effect on the Central Nervous System. Neurobiology of Disease, 188, Article 106333.
https://doi.org/10.1016/j.nbd.2023.106333
[7]  Song, Y., Peng, Y., Wang, B., Zhou, X., Cai, Y., Chen, H., et al. (2024) The Roles of Pyroptosis in the Pathogenesis of Autoimmune Diseases. Life Sciences, 359, Article 123232.
https://doi.org/10.1016/j.lfs.2024.123232
[8]  Newton, K., Strasser, A., Kayagaki, N. and Dixit, V.M. (2024) Cell Death. Cell, 187, 235-256.
https://doi.org/10.1016/j.cell.2023.11.044
[9]  He, S., Liang, Y., Shao, F. and Wang, X. (2011) Toll-Like Receptors Activate Programmed Necrosis in Macrophages through a Receptor-Interacting Kinase-3-Mediated Pathway. Proceedings of the National Academy of Sciences, 108, 20054-20059.
https://doi.org/10.1073/pnas.1116302108
[10]  Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421.
https://doi.org/10.1016/j.cell.2022.06.003
[11]  Zychlinsky, A., Prevost, M.C. and Sansonetti, P.J. (1992) Shigella flexneri Induces Apoptosis in Infected Macrophages. Nature, 358, 167-169.
https://doi.org/10.1038/358167a0
[12]  Forterre, P. (2001) New Viruses for the New Millennium. Trends in Microbiology, 9, 114.
https://doi.org/10.1016/s0966-842x(00)01944-2
[13]  Yuan, J. and Ofengeim, D. (2023) A Guide to Cell Death Pathways. Nature Reviews Molecular Cell Biology, 25, 379-395.
https://doi.org/10.1038/s41580-023-00689-6
[14]  Tan, M., Tan, L., Jiang, T., Zhu, X., Wang, H., Jia, C., et al. (2014) Amyloid-β Induces Nlrp1-Dependent Neuronal Pyroptosis in Models of Alzheimer’s Disease. Cell Death & Disease, 5, e1382.
https://doi.org/10.1038/cddis.2014.348
[15]  Adamczak, S.E., de Rivero Vaccari, J.P., Dale, G., Brand, F.J., Nonner, D., Bullock, M., et al. (2014) Pyroptotic Neuronal Cell Death Mediated by the AIM2 Inflammasome. Journal of Cerebral Blood Flow & Metabolism, 34, 621-629.
https://doi.org/10.1038/jcbfm.2013.236
[16]  Zhang, Z. (2020) Gasdermin E Suppresses Tumour Growth by Activating Anti-Tumour Immunity. Nature, 579, 415-420.
[17]  Tang, R., Xu, J., Zhang, B., Liu, J., Liang, C., Hua, J., et al. (2020) Ferroptosis, Necroptosis, and Pyroptosis in Anticancer Immunity. Journal of Hematology & Oncology, 13, Article No. 110.
https://doi.org/10.1186/s13045-020-00946-7
[18]  Wang, Q., Wang, Y., Ding, J., Wang, C., Zhou, X., Gao, W., et al. (2020) A Bioorthogonal System Reveals Antitumour Immune Function of Pyroptosis. Nature, 579, 421-426.
https://doi.org/10.1038/s41586-020-2079-1
[19]  Zhou, R., Yang, X., Li, X., Qu, Y., Huang, Q., Sun, X., et al. (2019) Recombinant CC16 Inhibits NLRP3/Caspase-1-Induced Pyroptosis through P38 MAPK and ERK Signaling Pathways in the Brain of a Neonatal Rat Model with Sepsis. Journal of Neuroinflammation, 16, Article No. 239.
https://doi.org/10.1186/s12974-019-1651-9
[20]  Wu, C., Lu, W., Zhang, Y., et al. (2019) Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity, 50, 1401-1411.
[21]  Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., et al. (2016) Pore-Forming Activity and Structural Autoinhibition of the Gasdermin Family. Nature, 535, 111-116.
https://doi.org/10.1038/nature18590
[22]  Huang, Y., Xu, W. and Zhou, R. (2021) NLRP3 Inflammasome Activation and Cell Death. Cellular & Molecular Immunology, 18, 2114-2127.
https://doi.org/10.1038/s41423-021-00740-6
[23]  Jo, E., Kim, J.K., Shin, D. and Sasakawa, C. (2015) Molecular Mechanisms Regulating NLRP3 Inflammasome Activation. Cellular & Molecular Immunology, 13, 148-159.
https://doi.org/10.1038/cmi.2015.95
[24]  Tang, T., Lang, X., Xu, C., Wang, X., Gong, T., Yang, Y., et al. (2017) CLICs-Dependent Chloride Efflux Is an Essential and Proximal Upstream Event for NLRP3 Inflammasome Activation. Nature Communications, 8, Article No. 202.
https://doi.org/10.1038/s41467-017-00227-x
[25]  Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M. and Núñez, G. (2013) K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter. Immunity, 38, 1142-1153.
https://doi.org/10.1016/j.immuni.2013.05.016
[26]  Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2010) A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature, 469, 221-225.
https://doi.org/10.1038/nature09663
[27]  Murakami, T., Ockinger, J., Yu, J., Byles, V., McColl, A., Hofer, A.M., et al. (2012) Critical Role for Calcium Mobilization in Activation of the NLRP3 Inflammasome. Proceedings of the National Academy of Sciences, 109, 11282-11287.
https://doi.org/10.1073/pnas.1117765109
[28]  Wang, Z., Zhang, S., Xiao, Y., Zhang, W., Wu, S., Qin, T., et al. (2020) NLRP3 Inflammasome and Inflammatory Diseases. Oxidative Medicine and Cellular Longevity, 2020, 1-11.
https://doi.org/10.1155/2020/4063562
[29]  Tourkochristou, E., Aggeletopoulou, I., Konstantakis, C. and Triantos, C. (2019) Role of NLRP3 Inflammasome in Inflammatory Bowel Diseases. World Journal of Gastroenterology, 25, 4796-4804.
https://doi.org/10.3748/wjg.v25.i33.4796
[30]  Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015) Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature, 526, 660-665.
https://doi.org/10.1038/nature15514
[31]  He, W., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., et al. (2015) Gasdermin D Is an Executor of Pyroptosis and Required for Interleukin-1β Secretion. Cell Research, 25, 1285-1298.
https://doi.org/10.1038/cr.2015.139
[32]  Chen, L., Yu, H., Li, Z., Wang, Y., Jin, S., Yu, M., et al. (2024) Force-Induced Caspase-1-Dependent Pyroptosis Regulates Orthodontic Tooth Movement. International Journal of Oral Science, 16, Article No. 3.
https://doi.org/10.1038/s41368-023-00268-7
[33]  Han, Y., Yang, Q., Huang, Y., Gao, P., Jia, L., Zheng, Y., et al. (2022) Compressive Force Regulates Orthodontic Tooth Movement via Activating the NLRP3 Inflammasome. The FASEB Journal, 36, e22627.
https://doi.org/10.1096/fj.202200447rr
[34]  Zhang, J., Liu, X., Wan, C., Liu, Y., Wang, Y., Meng, C., et al. (2020) NLRP3 Inflammasome Mediates M1 Macrophage Polarization and Il‐1β Production in Inflammatory Root Resorption. Journal of Clinical Periodontology, 47, 451-460.
https://doi.org/10.1111/jcpe.13258
[35]  Comellas, E., Farkas, J.E., Kleinberg, G., Lloyd, K., Mueller, T., Duerr, T.J., et al. (2022) Local Mechanical Stimuli Correlate with Tissue Growth in Axolotl Salamander Joint Morphogenesis. Proceedings of the Royal Society B: Biological Sciences, 289, Article 20220621.
https://doi.org/10.1098/rspb.2022.0621
[36]  Rao, Y., Gai, X., Xiong, J., Le, Y. and Sun, Y. (2021) Transient Receptor Potential Cation Channel Subfamily V Member 4 Mediates Pyroptosis in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 12, Article 783891.
https://doi.org/10.3389/fphys.2021.783891
[37]  Li, X., Men, X., Ji, L., Chen, X., He, S., Zhang, P., et al. (2024) NLRP3-Mediated Periodontal Ligament Cell Pyroptosis Promotes Root Resorption. Journal of Clinical Periodontology, 51, 474-486.
https://doi.org/10.1111/jcpe.13914
[38]  Zhai, M., Cui, S., Li, L., Cheng, C., Zhang, Z., Liu, J., et al. (2022) Mechanical Force Modulates Alveolar Bone Marrow Mesenchymal Cells Characteristics for Bone Remodeling during Orthodontic Tooth Movement through Lactate Production. Cells, 11, Article 3724.
https://doi.org/10.3390/cells11233724

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133