全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

固废及生活垃圾高温气化制氢工艺流程模拟研究
Simulation Study on the Process Flow of High-Temperature Gasification of Solid Waste and Household Waste for Hydrogen Production

DOI: 10.12677/aep.2025.152029, PP. 224-238

Keywords: 固废垃圾,高温气化,Aspen Plus
Solid Waste
, High-Temperature Gasification, Aspen Plus

Full-Text   Cite this paper   Add to My Lib

Abstract:

在“碳达峰、碳中和”的时代背景下,使用城市固废及生活垃圾制“绿氢”技术具有明显优势和发展潜力。本文通过Aspen Plus软件建立了固废及生活垃圾高温气化制氢系统模型,研究了热解温度、气化剂组成及比例对合成气组份的影响。模拟结果表明:当含水率为55.43%的垃圾干燥至含水率15%,干燥温度180℃,气化温度800℃以上,熔融温度1500℃,气化剂为水蒸气和氧气,总气化剂系数为0.3 (水蒸气40%,氧气60%)时,热解气化所需能量为112204.1 MJ·h1,合成气摩尔流量为377.232 kmol/h,可燃气体摩尔流量为280.37 kmol/h,氢气的摩尔比为34.34%,一氧化碳摩尔比为29.76%,甲烷10.22%,合成气低位热值为11.14 MJ·m3。城市固废及生活垃圾制备的“绿氢”可进一步合成“绿氨”应用于火电掺氨燃烧实现减碳降碳。
In the context of “carbon peak, carbon neutral”, the use of municipal solid waste (MSW) to produce “green hydrogen” technology has obvious advantages and development potential. In this paper, hydrogen production from plasma gasification of solid waste and domestic waste is modeled by Aspen Plus, and ammonia synthesis is simply simulated using hydrogen. The effects of pyrolysis temperature, gasifier composition and ratio on syngas composition are investigated. The simulation results showed that when the water content of the waste is 55.43%, the moisture content after drying is 15%, the drying temperature is 180?C, the gasification temperature is 800?C, melting temperature 1500?C, the gasification agents are water vapor and oxygen, and the total gasification agent coefficient is 0.3 (40% for water vapor and 60% for oxygen), the energy required for pyrolysis and gasification is 112204.1 MJ·h?1, and the molar flow rate of the produced gas is 377.232 kmol/h, the molar flow rate of combustible gas is 280.37 kmol/h, the molar ratio of hydrogen is 34.34%, the molar ratio of carbon monoxide is 29.76%, methane is 10.22%, and the low-level calorific value of syngas is 11.14 MJ·m?3. The “green hydrogen” produced from MSW can be further synthesized into “green ammonia” for use in power plants ammonia blending combustion to achieve carbon reduction and emission reduction.

References

[1]  Bhatt, M., Chakinala, A.G., Joshi, J.B., Sharma, A., Pant, K.K., Shah, K., et al. (2021) Valorization of Solid Waste Using Advanced Thermo-Chemical Process: A Review. Journal of Environmental Chemical Engineering, 9, Article 105434.
https://doi.org/10.1016/j.jece.2021.105434
[2]  Ding, Y., Zhao, J., Liu, J., Zhou, J., Cheng, L., Zhao, J., et al. (2021) A Review of China’s Municipal Solid Waste (MSW) and Comparison with International Regions: Management and Technologies in Treatment and Resource Utilization. Journal of Cleaner Production, 293, Article 126144.
https://doi.org/10.1016/j.jclepro.2021.126144
[3]  Zhang, D.Q., Tan, S.K. and Gersberg, R.M. (2010) Municipal Solid Waste Management in China: Status, Problems and Challenges. Journal of Environmental Management, 91, 1623-1633.
https://doi.org/10.1016/j.jenvman.2010.03.012
[4]  中国国家统计局. 中国统计年鉴 2011 [Z]. 北京: 中国国家统计局.
[5]  中国国家统计局. 中国统计年鉴 2021 [Z]. 北京: 中国国家统计局.
[6]  徐帆帆. 城市生活垃圾典型组分分级热解气化研究[D]: [硕士学位论文]. 青岛: 中国石油大学(华东), 2019.
[7]  埃德∙道奇, 谭亚军. 等离子气化技术在垃圾处理中的应用[J]. 中国环保产业, 2010(10): 59-61.
[8]  黄耕. 等离子气化技术在固体废物处理中的应用[J]. 中国环保产业, 2010(6): 43-45.
[9]  王希, 张春飞, 王晓婷, 等. 城市生活垃圾等离子气化技术研究进展[J]. 现代化工, 2012, 32(12): 20-24.
[10]  Boulos, M.I. (1991) Thermal Plasma Processing. IEEE Transactions on Plasma Science, 19, 1078-1089.
https://doi.org/10.1109/27.125032
[11]  吴承康. 我国等离子体工艺研究进展[J]. 物理, 1999, 28(7): 388-393.
[12]  Heberlein, J. and Murphy, A.B. (2008) Thermal Plasma Waste Treatment. Journal of Physics D: Applied Physics, 41, Article 053001.
https://doi.org/10.1088/0022-3727/41/5/053001
[13]  Gomez, E., Rani, D.A., Cheeseman, C.R., Deegan, D., Wise, M. and Boccaccini, A.R. (2009) Thermal Plasma Technology for the Treatment of Wastes: A Critical Review. Journal of Hazardous Materials, 161, 614-626.
https://doi.org/10.1016/j.jhazmat.2008.04.017
[14]  林小英, 李玉林. 等离子体技术在固体废弃物处理中的应用[J]. 资源调查与环境, 2005, 26(2): 128-131.
[15]  袁国安, 彭安稳. 生活垃圾木质组分固定床连续气化特性[J]. 锅炉技术, 2022, 53(1): 63-71.
[16]  Chen, C., Jin, Y., Yan, J. and Chi, Y. (2013) Simulation of Municipal Solid Waste Gasification in Two Different Types of Fixed Bed Reactors. Fuel, 103, 58-63.
https://doi.org/10.1016/j.fuel.2011.06.075
[17]  Tungalag, A., Lee, B., Yadav, M. and Akande, O. (2020) Yield Prediction of MSW Gasification Including Minor Species through ASPEN Plus Simulation. Energy, 198, Article 117296.
https://doi.org/10.1016/j.energy.2020.117296
[18]  Wang, H., Ren, R., Liu, B. and You, C. (2022) Hydrogen Production with an Auto-Thermal MSW Steam Gasification and Direct Melting System: A Process Modeling. International Journal of Hydrogen Energy, 47, 6508-6518.
https://doi.org/10.1016/j.ijhydene.2021.12.009
[19]  吴凯. 层状Au/α-MoC负载催化剂催化低温水煤气变换反应[J]. 物理化学学报, 2018, 34(1): 3-4.
[20]  李志, 杜学森, 汪宇, 等. 低温等离子体催化水煤气变换反应: 催化剂载体的影响[J]. 工程热物理学报, 2022, 43(8): 2202-2211.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133