全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植树位置对瞬态被动标量污染扩散过程影响的研究
Research on the Influence of Tree Planting Location on the Transient Passive Scalar Pollution Diffusion Process

DOI: 10.12677/aep.2025.152028, PP. 212-223

Keywords: 大涡模拟(LES),大气污染,绿植位置,住宅区
Large Eddy Simulation (LES)
, Atmospheric Pollution, Vegetation Placement, Residential Area

Full-Text   Cite this paper   Add to My Lib

Abstract:

以实际ATP炉下的住宅区受污染实际地形威力,针对住宅区域附近的绿植排布进行大涡模拟,参数化表征住宅与绿植,对绿植位置在住宅区内的排布进行中尺度的大气污染分析。与CODASC在数值统计结果上表现出更好的一致性结果。通过计算区域内的瞬时浓度、积分浓度、时间尺度浓度变化等,精细化溯源定量耦合绿植位置与大气污染排放的定量关系,结合迎风侧、被风侧以及重点关注的行人活动高度区域提供种植建议,不合理的种植会引发积分浓度高于合理种植的251%,同时保留时间与种树位置的拟合高达0.883,综合来看不推荐楼房前侧即污染上游种树,同时也需要综合实际考虑,指导并提供厂区内种植方案。
Based on the actual polluted terrain conditions of residential areas located beneath the ATP furnace, large eddy simulations were conducted to analyze the arrangement of green vegetation near these residential zones. Residences and vegetation were parameterized for representation, and mesoscale atmospheric pollution analysis was performed on the spatial distribution of vegetation within the residential area. The results demonstrated better consistency with CODASC in numerical statistical outcomes. By calculating instantaneous concentrations, integrated concentrations, and temporal concentration variations within the region, the study finely traced and quantitatively coupled the relationship between vegetation placement and atmospheric pollution emissions. Planting recommendations were provided by considering windward sides, leeward sides, and key pedestrian activity height zones. Irrational planting could lead to integrated concentrations exceeding those of rational planting by 251%, and the correlation between retention time and tree planting positions reached up to 0.883. Overall, it is not recommended to plant trees on the front side of buildings—namely, the upstream side of pollution sources. Comprehensive practical considerations are necessary to guide and provide planting schemes within the industrial area.

References

[1]  苏泽琳, 傅娅. 绿色基础设施建设在城市更新中的途径探讨——以成都市天府绿道为例[J]. 现代园艺, 2024, 47(6): 181-183+186.
[2]  刘宸瑄, 王丽群, 许行, 等. 2001-2021年中国植被覆盖对夏季城市热岛效应的影响[J]. 生态学报, 2024(24): 1-15.
[3]  张菁华, 田盼立, 刘晓, 等. 城市绿化对空气质量的影响研究——以中国27个省会城市为例[J]. 植物研究, 2019, 39(3): 471-480.
[4]  Gill, S.E., Handley, J.F., Ennos, A.R. and Pauleit, S. (2007) Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environment, 33, 115-133.
https://doi.org/10.2148/benv.33.1.115
[5]  Santos, B.A., Alvarado, F. and Morante-Filho, J.C. (2024) Impacts of Urbanization on Multiple Dimensions of Bird Diversity in Atlantic Forest Landscapes. Global Ecology and Conservation, 54, e03078.
https://doi.org/10.1016/j.gecco.2024.e03078
[6]  李江苏, 段良荣, 张天娇. 中国城市PM_(2.5)和PM_(10)时空分布特征和影响因素分析[J]. 环境科学, 2024, 45(4): 1938-1949.
[7]  杨文栋, 朱宗珍, 陈斌. 基于时空角度的城市热岛效应演变研究——以甘肃省金昌市为例[J]. 甘肃科技纵横, 2024, 53(7): 77-84.
[8]  Mo, Z. and Liu, C. (2018) Wind Tunnel Measurements of Pollutant Plume Dispersion over Hypothetical Urban Areas. Building and Environment, 132, 357-366.
https://doi.org/10.1016/j.buildenv.2018.01.046
[9]  时彪. 基于多源数据的合肥市城市热岛角度效应研究[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2023
[10]  Li, Z., Ming, T., Shi, T., Zhang, H., Wen, C., Lu, X., et al. (2021) Review on Pollutant Dispersion in Urban Areas-Part B: Local Mitigation Strategies, Optimization Framework, and Evaluation Theory. Building and Environment, 198, Article 107890.
https://doi.org/10.1016/j.buildenv.2021.107890
[11]  Liu, Z.M., Lu, X.H., Feng, J.L., et al. (2017) Influence of Ship Emissions on Urban Air Quality: A Comprehensive Study Using Highly Time-Resolved Online Measurements and Numerical Simulation in Shanghai. Environmental Science & Technology Journal, 51, 202-211.
[12]  Li, J.W. and Feng, Z.X. (2014) Application of Numerical Simulation Technology in the Large Space Air-Conditioned Buildings Air-Conditioned Buildings. Applied Mechanics and Materials, 624, 657-660.
https://doi.org/10.4028/www.scientific.net/amm.624.657
[13]  程馨, 孙家佞, 凌凯. 城市大气颗粒物中锑污染研究进展[J]. 环境污染与防治, 2024, 46(1): 123-127.
[14]  马本, 秦露, 夏天辰. 中国城市PM_(2.5)污染暴露不平等及其驱动因素——基于Theil指数和LMDI分解[J]. 中国环境科学, 2024, 44(1): 555-566.
[15]  Pugh, T.A.M., MacKenzie, A.R., Whyatt, J.D. and Hewitt, C.N. (2012) Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environmental Science & Technology, 46, 7692-7699.
https://doi.org/10.1021/es300826w
[16]  李巧萍, 吴凯露, 吕星安, 等. 东阳市工业园区大气污染物时空分布特征分析[J]. 环境污染与防治, 2023, 45(12): 1689-1694+1698.
[17]  张成, 原野, 张琴, 等. 中国污染物性质鉴定技术体系现状及展望[J]. 环境污染与防治, 2021, 43(5): 649-658.
[18]  赵晓帅, 郑其冰, 马瑞, 等. 北京市城市河流中抗生素的污染特征及多层次生态风险评估[J]. 环境科学, 2024, 45(6): 3165-3175.
[19]  Tong, Z., Baldauf, R.W., Isakov, V., Deshmukh, P. and Max Zhang, K. (2016) Roadside Vegetation Barrier Designs to Mitigate Near-Road Air Pollution Impacts. Science of the Total Environment, 541, 920-927.
https://doi.org/10.1016/j.scitotenv.2015.09.067
[20]  Hagler, G.S.W., Tang, W., Freeman, M.J., Heist, D.K., Perry, S.G. and Vette, A.F. (2011) Model Evaluation of Roadside Barrier Impact on Near-Road Air Pollution. Atmospheric Environment, 45, 2522-2530.
https://doi.org/10.1016/j.atmosenv.2011.02.030
[21]  高雅, 刘杨, 吕佳佩. 空气质量模型研究进展综述[J]. 环境污染与防治, 2022, 44(7): 939-943.
[22]  徐一平. 城市街区微环境的观测和大涡模拟研究[D]: [硕士学位论文]. 北京: 中国气象科学研究院, 2021
[23]  孙世艳. 建筑近场大气污染物扩散的大涡模拟研究[D]: [硕士学位论文]. 衡阳: 南华大学, 2022
[24]  查燕, 马华升, 俞祥群, 等. 城市绿化植物对不同粒径大气颗粒物的吸附特征研究[J]. 环境污染与防治, 2020, 42(7): 807-811+819.
[25]  李青妤, 胡婷莛, 陈楠, 等. 某高密度街区大气颗粒物质量浓度分布特征实测研究[J]. 环境污染与防治, 2022, 44(2): 206-211+217.
[26]  Moonen, P., Gromke, C. and Dorer, V. (2013) Performance Assessment of Large Eddy Simulation (LES) for Modeling Dispersion in an Urban Street Canyon with Tree Planting. Atmospheric Environment, 75, 66-76.
https://doi.org/10.1016/j.atmosenv.2013.04.016
[27]  Seinfeld, J.H. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley.
[28]  朱建州. 大气和海洋工程的被动标量问题基础研究: 面向湍流被动标量问题的“统一场论”[C]//中国力学学会流体力学专业委员会. 2018年全国工业流体力学会议摘要集. 2018: 64-65.
[29]  Mason, P.J. and Thomson, D.J. (1992) Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers. Journal of Fluid Mechanics, 242, 51-78.
https://doi.org/10.1017/s0022112092002271
[30]  Teresa, S., Ugo, P. and Giuliano-De, S. (2023) Wall-Modelled Large-Eddy Simulations of Rough-Walls Boundary. Université de Sherbrooke.
[31]  Gadde, S.N. (2021) Large Eddy Simulations of Stratified Atmospheric Boundary Layers and Wind Farms. University of Twente Research Information.
[32]  Duan, G., Bi, Z., Zhao, L., Yang, T. and Takemi, T. (2024) Modulating Local Winds and Turbulence around a Single Building Obstacle with the Obstruction of Tall Vegetation. Physics of Fluids, 36, Article 105138.
https://doi.org/10.1063/5.0227565
[33]  Sullivan, P.P., McWilliams, J.C. and Moeng, C. (1994) A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows. Boundary-Layer Meteorology, 71, 247-276.
https://doi.org/10.1007/bf00713741
[34]  Noh, Y., Cheon, W.G., Hong, S.Y. and Raasch, S. (2003) Improvement of the K-Profile Model for the Planetary Boundary Layer Based on Large Eddy Simulation Data. Boundary-Layer Meteorology, 107, 401-427.
https://doi.org/10.1023/a:1022146015946
[35]  陈立宏, 周晓伦. 住宅区噪声污染居民亦可维权[J]. 环境, 2022(6): 44-45.
[36]  谢林林. 城市郊区住宅区对水环境的污染及应采取的对策[J]. 中国城市经济, 2002(2): 55-56.
[37]  Bell, M. and Dominici, F. (2006) Analysis of Threshold Effects for Short-Term Exposure to Ozone and Increased Risk of Mortality. Ovid Technologies (Wolters Kluwer Health), 17, S223.
[38]  Guo, J.H., Zhou, J.Y., et al. (2023) Association of Short-Term Co-Exposure to Particulate Matter and Ozone with Mortality Risk. Environmental Science & Technology, 57, 15825-15834.
[39]  Carissa-Marie, R. (2009) Pesticide Exposure and Risk of Hypospadias. The University of Iowa.
[40]  Fann, N., Fulcher, C.M. and Hubbell, B.J. (2009) The Influence of Location, Source, and Emission Type in Estimates of the Human Health Benefits of Reducing a Ton of Air Pollution. Air Quality, Atmosphere & Health, 2, 169-176.
https://doi.org/10.1007/s11869-009-0044-0
[41]  Clewell, H.J., Tan, Y.M., Campbell, J.L. and Andersen, M.E. (2008) Quantitative Interpretation of Human Biomonitoring Data. Toxicology and Applied Pharmacology, 231, 122-133.
https://doi.org/10.1016/j.taap.2008.04.021
[42]  Barton, L. and Schipper, L.A. (2002) Regulation of Nitrous Oxide Emissions from Soils Irrigated with Dairy Farm Effluent. Journal of Environment Quality, 31, 2125-a.
https://doi.org/10.2134/jeq2002.2125a
[43]  Clewell, H.J. and Andersen, M.E. (1985) Risk Assessment Extrapolations and Physiological Modeling. Toxicology and Industrial Health, 1, 111-134.
https://doi.org/10.1177/074823378500100408
[44]  Domann, R. and Hardalupas, Y. (2001) Spatial Distribution of Fluorescence Intensity within Large Droplets and Its Dependence on Dye Concentration. Applied Optics, 40, 3586-3597.
https://doi.org/10.1364/ao.40.003586
[45]  Kubilay, A., Neophytou, M.K.A., Matsentides, S., Loizou, M. and Carmeliet, J. (2017) The Pollutant Removal Capacity of an Urban Street Canyon and Its Link to the Breathability and Exchange Velocity. Procedia Engineering, 180, 443-451.
https://doi.org/10.1016/j.proeng.2017.04.203
[46]  Buccolieri, R., Sandberg, M. and Di Sabatino, S. (2010) City Breathability and Its Link to Pollutant Concentration Distribution within Urban-Like Geometries. Atmospheric Environment, 44, 1894-1903.
https://doi.org/10.1016/j.atmosenv.2010.02.022
[47]  Bell, M.L., Peng, R.D. and Dominici, F. (2006) The Exposure-Response Curve for Ozone and Risk of Mortality and the Adequacy of Current Ozone Regulations. Environmental Health Perspectives, 114, 532-536.
https://doi.org/10.1289/ehp.8816

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133