|
改性凹凸棒石对水中磷的吸附研究进展
|
Abstract:
富营养化是一个全球性问题,威胁着饮用水安全乃至整个生态系统平衡。水体中磷(以磷酸盐为主)的过量排放是引起富营养化的重要原因之一,控制水体中磷的浓度,特别是磷酸盐浓度,具有重要的意义。近年来,吸附剂用于水体除磷的应用越来越广泛,凹凸棒石因其成本低、吸附性好等优势而被广泛研究。尽管近几年报道的凹凸棒石改性吸附剂除磷效率普遍较高,但其除磷机理仍未完全理清。本文总结了改性凹凸棒石的技术方法,系统分析了其吸附机理,并对今后的研究方向进行了展望,为完善改性凹凸棒石吸附机理及工艺改进提供参考。
Eutrophication is a global problem that threatens the safety of drinking water and even the balance of the entire ecosystem. Excessive discharge of phosphorus (mainly phosphate) in water bodies is one of the important causes of eutrophication. It is important to control the concentration of phosphorus, especially phosphate, in water bodies. In recent years, adsorbents for phosphorus removal from water have become more and more widely used. Attapulgite has been widely studied because of its low cost and good adsorption properties. Notably, the phosphorus removal efficiencies of attapulgite-modified adsorbents reported in recent years are generally high, but their phosphorus removal mechanisms are still not clarified. The technical approach of modified attapulgite is summarized in the paper. Then its adsorption mechanism was systematically analyzed. Finally, the future research direction is envisioned, with a view to providing reference for the improvement of the adsorption mechanism of modified attapulgite and the process improvement.
[1] | Bao, T., Damtie, M.M., Yu, Z.M., Liu, Y., Jin, J., Wu, K., et al. (2019) Green Synthesis of Fe3O4@Carbon Filter Media for Simultaneous Phosphate Recovery and Nitrogen Removal from Domestic Wastewater in Biological Aerated Filters. ACS Sustainable Chemistry & Engineering, 7, 16698-16709. https://doi.org/10.1021/acssuschemeng.9b04119 |
[2] | Duan, X., Zhao, Y. and Zhang, J. (2020) Characteristics of the Root Exudate Release System of Typical Plants in Plateau Lakeside Wetland under Phosphorus Stress Conditions. Open Chemistry, 18, 808-821. https://doi.org/10.1515/chem-2020-0059 |
[3] | Barbaux, Y., Dekiouk, M., Le Maguer, D., Gengembre, L., Huchette, D. and Grimblot, J. (1992) Bulk and Surface Analysis of a Fe-P-O Oxydehydrogenation Catalyst. Applied Catalysis A: General, 90, 51-60. https://doi.org/10.1016/0926-860x(92)80247-a |
[4] | Carrillo, V., Castillo, R., Magrí, A., Holzapfel, E. and Vidal, G. (2024) Phosphorus Recovery from Domestic Wastewater: A Review of the Institutional Framework. Journal of Environmental Management, 351, Article ID: 119812. https://doi.org/10.1016/j.jenvman.2023.119812 |
[5] | Wang, S., Huang, Y., Wu, Q., Yao, W., Lu, Y., Huang, B., et al. (2023) A Review of the Application of Iron Oxides for Phosphorus Removal and Recovery from Wastewater. Critical Reviews in Environmental Science and Technology, 54, 405-423. https://doi.org/10.1080/10643389.2023.2242227 |
[6] | Blanco, C., González, F., Pesquera, C., Benito, I., Mendioroz, S. and Pajares, J.A. (1989) Differences between One Aluminic Palygorskite and Another Magnesic by Infrared Spectroscopy. Spectroscopy Letters, 22, 659-673. https://doi.org/10.1080/00387018908053926 |
[7] | Chahi, A., Petit, S. and Decarreau, A. (2002) Infrared Evidence of Dioctahedral-Trioctahedral Site Occupancy in Palygorskite. Clays and Clay Minerals, 50, 306-313. https://doi.org/10.1346/00098600260358067 |
[8] | Chen, H., Zhao, Y. and Wang, A. (2007) Removal of Cu(II) from Aqueous Solution by Adsorption onto Acid-Activated Palygorskite. Journal of Hazardous Materials, 149, 346-354. https://doi.org/10.1016/j.jhazmat.2007.03.085 |
[9] | Cheng, H., Yang, J., Frost, R.L. and Wu, Z. (2011) Infrared Transmission and Emission Spectroscopic Study of Selected Chinese Palygorskites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83, 518-524. https://doi.org/10.1016/j.saa.2011.08.077 |
[10] | Fang, D., Huang, L., Fang, Z., Zhang, Q., Shen, Q., Li, Y., et al. (2018) Evaluation of Porous Calcium Silicate Hydrate Derived from Carbide Slag for Removing Phosphate from Wastewater. Chemical Engineering Journal, 354, 1-11. https://doi.org/10.1016/j.cej.2018.08.001 |
[11] | Gan, F., Zhou, J., Wang, H., Du, C. and Chen, X. (2009) Removal of Phosphate from Aqueous Solution by Thermally Treated Natural Palygorskite. Water Research, 43, 2907-2915. https://doi.org/10.1016/j.watres.2009.03.051 |
[12] | Goscianska, J., Ptaszkowska-Koniarz, M., Frankowski, M., Franus, M., Panek, R. and Franus, W. (2018) Removal of Phosphate from Water by Lanthanum-Modified Zeolites Obtained from Fly Ash. Journal of Colloid and Interface Science, 513, 72-81. https://doi.org/10.1016/j.jcis.2017.11.003 |
[13] | Gajewska, M. and Kasprzyk, M. (2017) Preliminary Results from Application Phoslock® to Remove Phosphorus Compounds from Wastewater. Journal of Ecological Engineering, 18, 82-89. https://doi.org/10.12911/22998993/74275 |
[14] | Dai, F., Wen, M., Wang, J., Jiang, W., Tian, X., Dong, Y., et al. (2018) Preparation and Properties of CA/ATP-g-CDs Gel Fibers for Simultaneous Detection and Adsorption of Methylene Blue. RSC Advances, 8, 22577-22582. https://doi.org/10.1039/c8ra01324a |
[15] | Yin, H. and Kong, M. (2014) Simultaneous Removal of Ammonium and Phosphate from Eutrophic Waters Using Natural Calcium-Rich Attapulgite-Based Versatile Adsorbent. Desalination, 351, 128-137. https://doi.org/10.1016/j.desal.2014.07.029 |
[16] | Liu, S., Zhao, S., Fan, F., Zhang, B. and Wang, S. (2022) Magnetically Separable and Recyclable Lanthanum/Iron Co-Modified Attapulgite: A Sustainable Option to Efficiently Control Phosphate Loading. Journal of Cleaner Production, 348, Article ID: 131294. https://doi.org/10.1016/j.jclepro.2022.131294 |
[17] | Zhang, C., Wang, X., Wang, X. and Liu, B. (2022) Characterization of La-Mg-Modified Palygorskite and Its Adsorption of Phosphate. Journal of Environmental Chemical Engineering, 10, Article ID: 107658. https://doi.org/10.1016/j.jece.2022.107658 |
[18] | 干方群, 周健民, 王火焰, 等. 不同浓度酸改性对凹凸棒石黏土磷吸附性能的影响[J]. 土壤学报, 2010, 47(2): 319-324. |
[19] | 闫洁. 碱改性凹凸棒对土壤重金属的钝化效果与研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2017. |
[20] | 李燕. 凹凸棒土改性及其脱氮除磷效率和机理研究[D]: [硕士学位论文]. 雅安: 四川农业大学, 2016. |
[21] | 房百惠. 改性凹凸棒土钝化城市污泥重金属及其环境安全性评价[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2021. |
[22] | 柏文博. 盐改性凹凸棒黏土吸附剂的吸附性能研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2020. |
[23] | Yang, X., Chen, J., Wu, X. and Zhu, G. (2024) Toward a Better Understanding of Polymeric Aluminum‐Modified Attapulgite for the Efficient Removal of Low Phosphorus Concentration. Water Environment Research, 96, e11122. https://doi.org/10.1002/wer.11122 |
[24] | 李迎春, 董良飞, 仝驰, 等. 稀土改性凹凸棒土对低浓度磷的吸附性能[J]. 环境工程学报, 2021, 15(10): 3214-3222. |
[25] | Yin, H., Yang, P., Kong, M. and Li, W. (2020) Preparation of the Lanthanum-Aluminum-Amended Attapulgite Composite as a Novel Inactivation Material to Immobilize Phosphorus in Lake Sediment. Environmental Science & Technology, 54, 11602-11610. https://doi.org/10.1021/acs.est.0c03277 |
[26] | 李秀玲, 莫焱玲, 关虹, 等. 锆-铈@凹凸棒土复合吸附剂的制备及其除磷性能试验研究[J]. 湿法冶金, 2022, 41(5): 444-451. |
[27] | 李文翠. 凹凸棒土改性条件的探究及对污水中重金属离子的去除研究[D]: [硕士学位论文]. 沈阳: 沈阳师范大学, 2018. |
[28] | 孔豪. 镧改性凹凸棒土-壳聚糖复合材料的制备及除磷性能研究[D]: [硕士学位论文]. 北京: 中国农业科学院, 2023. |
[29] | Deng, C., Xue, J. and Wu, Y. (2022) Using Magnetite/Zirconium-Comodified Attapulgite as a Novel Phosphorus (P) Sorbent for the Efficient Removal of P and the Adsorption Mechanism Allowing This Effect. Applied Water Science, 13, Article No. 12. https://doi.org/10.1007/s13201-022-01821-1 |
[30] | Xu, C., Feng, Y., Li, H., Yang, Y. and Wu, R. (2023) Adsorption and Immobilization of Phosphorus from Eutrophic Seawater and Sediment Using Attapulgite—Behavior and Mechanism. Chemosphere, 313, Article ID: 137390. https://doi.org/10.1016/j.chemosphere.2022.137390 |
[31] | Baile, W., Fang, L., Fortner, J.D., et al. (2017) Highly Efficient and Selective Phosphate Removal from Wastewater by Magnetically Recoverable La(OH)3/Fe3O4 Nanocomposites. Water Research, 126, 179-188. |
[32] | Pan, Z., Zeng, B., Shen, L., Teng, J., Lai, T., Zhao, L., et al. (2024) Innovative Treatment of Industrial Effluents through Combining Ferric Iron and Attapulgite Application. Chemosphere, 358, Article ID: 142132. https://doi.org/10.1016/j.chemosphere.2024.142132 |
[33] | Song, Y., Yuan, P., Wei, Y., Liu, D., Tian, Q., Zhou, J., et al. (2019) Constructing Hierarchically Porous Nestlike Al2O3-MnO2@Diatomite Composite with High Specific Surface Area for Efficient Phosphate Removal. Industrial & Engineering Chemistry Research, 58, 23166-23174. https://doi.org/10.1021/acs.iecr.9b05574 |
[34] | Lv, N., Li, X., Qi, X. and Ren, Y. (2022) Calcium-Modified Granular Attapulgite Removed Phosphorus from Synthetic Wastewater Containing Low-Strength Phosphorus. Chemosphere, 296, Article ID: 133898. https://doi.org/10.1016/j.chemosphere.2022.133898 |
[35] | Wang, H., Wang, X. and Zhao, J. (2019) Application of MgO-Modified Palygorskite for Nutrient Recovery from Swine Wastewater: Effect of Ph, Ions, and Organic Acids. Environmental Science and Pollution Research, 26, 19729-19737. https://doi.org/10.1007/s11356-019-05254-3 |
[36] | Kong, H., Li, Q., Zheng, X., Chen, P., Zhang, G. and Huang, Z. (2023) Lanthanum Modified Chitosan-Attapulgite Composite for Phosphate Removal from Water: Performance, Mechanisms and Applicability. International Journal of Biological Macromolecules, 224, 984-997. https://doi.org/10.1016/j.ijbiomac.2022.10.183 |
[37] | Kong, H., Wang, J., Zhang, G., Shen, F., Li, Q. and Huang, Z. (2023) Synthesis of Three-Dimensional Porous Lanthanum Modified Attapulgite Chitosan Hydrogel Bead for Phosphate Removal: Performance, Mechanism, Cost-Benefit Analysis. Separation and Purification Technology, 320, Article ID: 124098. https://doi.org/10.1016/j.seppur.2023.124098 |