|
YTHDF2抑制NSCLC发生、发展的相关分子机制
|
Abstract:
背景与目的:非小细胞肺癌(non-small cell lung cancer, NSCLC)是目前全球发病率最高和死亡人数最多的恶性肿瘤,而其具体的发病机制仍然未知。相关文献和既往实验研究发现m6A的阅读蛋白YTHDF2可能通过分子之间的相互作用抑制NSCLC的发生、发展。本研究拟通过对NSCLC患者肿瘤组织进行病理观察以及生信分析,探索NSCLC的发生发展机制,对未来产生更加有效的NSCLC治疗手段和改善NSCLC患者的预后提供参考。方法:回顾性收集2021年5月至2022年5月于青岛大学胸外科确诊肺癌并住院手术的64例NSCLC患者的肿瘤及癌旁组织(根据世界卫生组织形态学标准)。对上诉样本分别进行病理染色及生信分析。结果:64例标本的HE染色可见肿瘤组织中病理损伤明显,能明确采集样本的诊断并与癌旁组织区分。TUNEL染色可见:肿瘤组织细胞凋亡水平升高。qRT-PCR实验结果表明在肿瘤组织中YTHDF2和p14基因表达水平明显高于癌旁组织(P < 0.05)。且Spearman等级相关性分析YTHDF2与p14在NSCLC肿瘤组织中的相对表达水平呈正相关(rs = 0.561, P < 0.001)。Western Blot检测组织YTHDF2表达水平,结果同qRT-PCR结果一致,肿瘤组织中的YTHDF2表达上调(P < 0.001)。TET2生信分析显示TET2 mRNA上存在大量的m6A位点,且GEPIA数据库显示YTHDF2与TET2的表达存在正相关性。甲基化特异性PCR检测结果表明肿瘤组织的p14 DNA中明确存在高甲基化修饰。根据GEPIA数据库显示在NSCLC中YTHDF2和TET2表达呈正相关,且qRT-PCR实验发现YTHDF2和p14在NSCLC肿瘤组织中的相对表达水平存在正相关性。结论:在NSCLC中,m6A的阅读蛋白YTHDF2可能通过识别TET2 mRNA上的m6A位点增加TET2蛋白的表达,发挥其去甲基化作用使p14 DNA启动子高甲基化区域发生去甲基化,促进p14ARF蛋白的表达,达到延缓NSCLC发生、发展和改善NSCLC患者预后的作用。
Background and objective: Non-small cell lung cancer (NSCLC) is currently the most prevalent and deadly malignancy worldwide. However, the precise mechanisms underlying its pathogenesis remain largely unknown. Previous literature and experimental studies suggest that YTHDF2, an m6A reader protein, may inhibit the initiation and progression of NSCLC through molecular interactions. This study aims to explore the mechanisms involved in the development and progression of NSCLC by conducting pathological observations and bioinformatic analyses of tumor tissues from NSCLC patients. The findings are expected to contribute to the development of more effective treatment strategies for NSCLC and to improve the prognosis of NSCLC patients. Methods: We retrospectively collected tumor and adjacent normal tissues from 64 NSCLC patients who were diagnosed and underwent surgery between May 2021 and May 2022 in the Department of Thoracic Surgery at Qingdao University, following the World Health Organization (WHO) morphological criteria. Pathological staining and bioinformatic analyses were performed on the collected samples. Results: Hematoxylin and eosin staining of the 64 specimens revealed significant pathological damage within the tumor tissue, which could clearly diagnose the collected samples and distinguish them from the adjacent tissues. TUNEL staining showed that the level of apoptosis in tumor tissues was increased compared with adjacent tissues. The results of qRT-PCR showed that the expression levels of YTHDF2 and p14 genes in tumor
[1] | Chen, W., Sun, K., Zheng, R., Zeng, H., Zhang, S., Xia, C., et al. (2018) Cancer Incidence and Mortality in China, 2014. Chinese Journal of Cancer Research, 30, 1-12. https://doi.org/10.21147/j.issn.1000-9604.2018.01.01 |
[2] | Sun, X., Li, C.W., Wang, W.J., et al. (2020) Inhibition of c-MET Upregulates PD-L1 Expression in Lung Adenocarcinoma. American Journal of Cancer Research, 10, 564-571. |
[3] | Yin, J., Wu, Y., Yang, X., Gan, L. and Xue, J. (2022) Checkpoint Inhibitor Pneumonitis Induced by Anti-Pd-1/Pd-L1 Therapy in Non-Small-Cell Lung Cancer: Occurrence and Mechanism. Frontiers in Immunology, 13, Article 830631. https://doi.org/10.3389/fimmu.2022.830631 |
[4] | Liu, Y., Guo, X., Zhao, M., Ao, H., Leng, X., Liu, M., et al. (2020) Contributions and Prognostic Values of m6A RNA Methylation Regulators in Non‐Small‐Cell Lung Cancer. Journal of Cellular Physiology, 235, 6043-6057. https://doi.org/10.1002/jcp.29531 |
[5] | Ohta, S., Uemura, H., Matsui, Y., Ishiguro, H., Fujinami, K., Kondo, K., et al. (2009) Alterations of P16 and P14arf Genes and Their 9P21 Locus in Oral Squamous Cell Carcinoma. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 107, 81-91. https://doi.org/10.1016/j.tripleo.2008.08.027 |
[6] | Sarkar, D., Leung, E.Y., Baguley, B.C., Finlay, G.J. and Askarian-Amiri, M.E. (2015) Epigenetic Regulation in Human Melanoma: Past and Future. Epigenetics, 10, 103-121. https://doi.org/10.1080/15592294.2014.1003746 |
[7] | Jiang, X., Liu, B., Nie, Z., Duan, L., Xiong, Q., Jin, Z., et al. (2021) The Role of M6a Modification in the Biological Functions and Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 74. https://doi.org/10.1038/s41392-020-00450-x |
[8] | Zhao, B.S., Roundtree, I.A. and He, C. (2016) Post-Transcriptional Gene Regulation by mRNA Modifications. Nature Reviews Molecular Cell Biology, 18, 31-42. https://doi.org/10.1038/nrm.2016.132 |
[9] | Oerum, S., Meynier, V., Catala, M. and Tisné, C. (2021) A Comprehensive Review of m6A/m6Am RNA Methyltransferase Structures. Nucleic Acids Research, 49, 7239-7255. https://doi.org/10.1093/nar/gkab378 |
[10] | Maldonado López, A. and Capell, B.C. (2021) The METTL3-m6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes, 12, Article 1019. https://doi.org/10.3390/genes12071019 |
[11] | Qu, J., Yan, H., Hou, Y., Cao, W., Liu, Y., Zhang, E., et al. (2022) RNA Demethylase ALKBH5 in Cancer: From Mechanisms to Therapeutic Potential. Journal of Hematology & Oncology, 15, Article No. 8. https://doi.org/10.1186/s13045-022-01224-4 |
[12] | Zaccara, S. and Jaffrey, S.R. (2020) A Unified Model for the Function of YTHDF Proteins in Regulating m6A-Modified mRNA. Cell, 181, 1582-1595.e18. https://doi.org/10.1016/j.cell.2020.05.012 |
[13] | Zhu, T., Roundtree, I.A., Wang, P., Wang, X., Wang, L., Sun, C., et al. (2014) Crystal Structure of the YTH Domain of YTHDF2 Reveals Mechanism for Recognition of N6-methyladenosine. Cell Research, 24, 1493-1496. https://doi.org/10.1038/cr.2014.152 |
[14] | Zhao, T., Wang, M., Zhao, X., Weng, S., Qian, K., Shi, K., et al. (2022) YTHDF2 Inhibits the Migration and Invasion of Lung Adenocarcinoma by Negatively Regulating the FAM83D-TGFβ1-SMAD2/3 Pathway. Frontiers in Oncology, 12, Article 763341. https://doi.org/10.3389/fonc.2022.763341 |
[15] | Hou, G., Zhao, X., Li, L., Yang, Q., Liu, X., Huang, C., et al. (2021) Sumoylation of YTHDF2 Promotes mRNA Degradation and Cancer Progression by Increasing Its Binding Affinity with m6A-Modified mRNAs. Nucleic Acids Research, 49, 2859-2877. https://doi.org/10.1093/nar/gkab065 |
[16] | Wu, X. and Zhang, Y. (2017) Tet-Mediated Active DNA Demethylation: Mechanism, Function and Beyond. Nature Reviews Genetics, 18, 517-534. https://doi.org/10.1038/nrg.2017.33 |
[17] | Jiang, S. (2020) Tet2 at the Interface between Cancer and Immunity. Communications Biology, 3, Article No. 667. https://doi.org/10.1038/s42003-020-01391-5 |
[18] | Pan, F., Weeks, O., Yang, F. and Xu, M. (2015) The Tet2 Interactors and Their Links to Hematological Malignancies. IUBMB Life, 67, 438-445. https://doi.org/10.1002/iub.1389 |
[19] | Ortmann, C.A., Kent, D.G., Nangalia, J., Silber, Y., Wedge, D.C., Grinfeld, J., et al. (2015) Effect of Mutation Order on Myeloproliferative Neoplasms. New England Journal of Medicine, 372, 601-612. https://doi.org/10.1056/nejmoa1412098 |
[20] | Patnaik, M.M. and Tefferi, A. (2022) Chronic Myelomonocytic Leukemia: 2022 Update on Diagnosis, Risk Stratification, and Management. American Journal of Hematology, 97, 352-372. https://doi.org/10.1002/ajh.26455 |
[21] | Bensberg, M., Rundquist, O., Selimović, A., Lagerwall, C., Benson, M., Gustafsson, M., et al. (2021) TET2 as a Tumor Suppressor and Therapeutic Target in T-Cell Acute Lymphoblastic Leukemia. Proceedings of the National Academy of Sciences of the United States of America, 118, Article ID: 10758118. https://doi.org/10.1073/pnas.2110758118 |
[22] | Zhang, C., Huang, S., Zhuang, H., Ruan, S., Zhou, Z., Huang, K., et al. (2020) YTHDF2 Promotes the Liver Cancer Stem Cell Phenotype and Cancer Metastasis by Regulating OCT4 Expression via M6a RNA Methylation. Oncogene, 39, 4507-4518. https://doi.org/10.1038/s41388-020-1303-7 |
[23] | Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. and Lowe, S.W. (1997) Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of P53 and p16INK4a. Cell, 88, 593-602. https://doi.org/10.1016/s0092-8674(00)81902-9 |
[24] | Kamijo, T., Weber, J.D., Zambetti, G., Zindy, F., Roussel, M.F. and Sherr, C.J. (1998) Functional and Physical Interactions of the ARF Tumor Suppressor with P53 and Mdm2. Proceedings of the National Academy of Sciences, 95, 8292-8297. https://doi.org/10.1073/pnas.95.14.8292 |
[25] | Liu, Y. and Gu, W. (2022) The Complexity of P53-Mediated Metabolic Regulation in Tumor Suppression. Seminars in Cancer Biology, 85, 4-32. https://doi.org/10.1016/j.semcancer.2021.03.010 |
[26] | Vidal, E., Sayols, S., Moran, S., Guillaumet-Adkins, A., Schroeder, M.P., Royo, R., et al. (2017) A DNA Methylation Map of Human Cancer at Single Base-Pair Resolution. Oncogene, 36, 5648-5657. https://doi.org/10.1038/onc.2017.176 |
[27] | Yang, X., Yang, L., Dai, W. and Ye, B. (2016) Role of p14ARF and p15INK4B Promoter Methylation in Patients with Lung Cancer: A Systematic Meta-Analysis. OncoTargets and Therapy, 9, 6977-6985. https://doi.org/10.2147/ott.s117161 |
[28] | Jia, B., Yang, R., Jiao, W. and Tian, K. (2019) Investigation of the Effect of P14 Promoter Aberrant Methylation on the Biological Function of Human Lung Cancer Cells. Thoracic Cancer, 10, 1388-1394. https://doi.org/10.1111/1759-7714.13082 |
[29] | Wang, F., Li, H., Long, J. and Ye, S. (2017) Clinicopathological Significance of P14ARF Expression in Lung Cancer: A Meta-Analysis. OncoTargets and Therapy, 10, 2491-2499. https://doi.org/10.2147/ott.s131954 |
[30] | Zhao, T., Wang, M.C., Zhao, X., et al. (2022) YTHDF2 Inhibits the Migration and Invasion of Lung Adenocarcinoma by Negatively Regulating the FAM83D-TGFβ1-SMAD2/3 Pathway. Frontiers in Oncology, 12, Article 763341. |
[31] | 田凯华, 沈毅, 罗宜人. 非小细胞肺癌中p14ARF基因的表达及意义[J]. 齐鲁医学杂志, 2005, 20(5): 389-390, 393. |