|
云物流背景下基于A*算法改进的新一代物流车的设计研发
|
Abstract:
本文旨在研究云物流背景下新一代物流车的调度问题,提出了一种基于A*算法的改进调度方法。改进主要包括两个方面:一是增加了车辆负载约束条件;二是引入了云物流环境下的大数据支持。此外,还采用了关键点提取策略和平滑处理,并结合动态窗口法进行局部路径优化。最后,通过实验对比分析了改进后的A*算法与传统算法的性能差异,并得出结论:改进后的算法在动态环境适应性、搜索效率、路径平滑度以及全局与局部优化等方面均有显著提升。研究主题契合当前物流行业的发展热点,具有实际应用价值。
This article aims to study the scheduling problem of new-generation logistics vehicles under the background of cloud logistics and propose an improved scheduling method based on A* algorithm. The improvement mainly includes two aspects: first, adding vehicle load constraints; second, introducing big data support in the cloud logistics environment. In addition, a key point extraction strategy and smoothing processing were adopted, combined with a dynamic window method for local path optimization. Finally, the performance differences between the improved A* algorithm and traditional algorithms were compared and analyzed through experiments, and the conclusion was drawn that the improved algorithm has significant improvements in dynamic environment adaptability, search efficiency, path smoothness, and global and local optimization. The research topic is in line with the current development hotspots in the logistics industry and has practical application value.
[1] | 黄昱航, 李国刚, 焦启, 等. 融合距离引导式A*算法与动态窗口法的移动机器人路径规划[J]. 华侨大学学报(自然科学版), 2025, 46(1): 87-94. |
[2] | 栗文涛, 郑继强, 徐进壮. 自动导引车路径规划技术研究[J]. 装备机械, 2024(2): 47-51. |
[3] | 赖荣燊, 窦磊, 巫志勇, 等. 融合改进A*算法和动态窗口法的移动机器人路径规划[J]. 系统仿真学报, 2024, 36(8): 1884-1894. |
[4] | 刘彪. 移动机器人路径规划算法的研究与仿真[D]: [硕士学位论文]. 呼和浩特: 内蒙古大学, 2022. |
[5] | 王森. 医疗物流AGV高精度导航定位与路径规划算法研究[D]: [硕士学位论文]. 长春: 长春理工大学, 2022. |
[6] | 郭翰卿, 付丽霞, 张勇, 等. 基于动态障碍物的机器人避障路径规划方法[J]. 电视技术, 2022, 46(1): 73-77, 84. |
[7] | 吴婷. 区块链赋能智慧物流平台化发展的挑战与应对策略[J]. 商业经济研究, 2022(1): 105-108. |
[8] | 王舒晓. 复杂环境下群智能优化算法在无人车路径规划上的应用研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2021. |
[9] | 王娜. 区块链架构下冷链物流信息生态管理探讨[J]. 商业经济研究, 2021(21): 98-102. |
[10] | 陈稳. 物联网中的电子信息技术应用探析[J]. 数码世界, 2020(2): 53. |