全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The SYZ Conjecture through Computational Equivalence

DOI: 10.4236/apm.2025.152007, PP. 145-181

Keywords: Mirror Symmetry, Calabi-Yau Manifolds, SYZ Conjecture, Quantum Complexity, Special Lagrangian Fibration

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a proof of the Strominger-Yau-Zaslow (SYZ) conjecture by demonstrating that mirror symmetry fundamentally represents an equivalence of computational structures between Calabi-Yau manifolds. Through development of a rigorous quantum complexity operator formalism, we show that mirror pairs must have equivalent complexity spectra and that the SYZ fibration naturally preserves these computational invariants while implementing the required geometric transformations. Our proof proceeds by first establishing a precise mathematical framework connecting quantum complexity with geometric structures, then demonstrating that the special Lagrangian torus fibration preserves computational complexity at both local and global levels, and finally proving that this preservation necessarily implies the geometric correspondences required by the SYZ conjecture. This approach not only resolves the conjecture but reveals deeper insights about the relationship between computation and geometry in string theory. We introduce new complexity-based invariants for studying mirror symmetry and demonstrate how our framework extends naturally to related geometric structures.

References

[1]  Greene, B. and Plesser, M.R. (1996) Mirror Manifolds: A Brief Review and Progress Report. Reviews of Modern Physics, 68, 647-687.
[2]  Strominger, A., Yau, S. and Zaslow, E. (1996) Mirror Symmetry Is T-Duality. Nuclear Physics B, 479, 243-259.
https://doi.org/10.1016/0550-3213(96)00434-8
[3]  Gross, M. (2003) Special Lagrangian Fibrations I: Topology. AMS IP Studies in Advanced Mathematics, 23, 65-93.
[4]  Hosono, S., Klemm, A., Thiesen, S. and Yau, S. (1995) Mirror Symmetry, Mirror Map and Applications to Calabi-Yau Hypersurfaces. Communications in Mathematical Physics, 167, 301-350.
https://doi.org/10.1007/bf02100589
[5]  Kontsevich, M. (1995) Homological Algebra of Mirror Symmetry. Proceedings of the International Congress of Mathematicians, 1, 120-139.
https://doi.org/10.1007/978-3-0348-9078-6_11
[6]  Susskind, L. (2016) Computational Complexity and Black Hole Horizons. Fortschritte der Physik, 64, 24-43.
https://doi.org/10.1002/prop.201500092
[7]  Brown, A.R. and Susskind, L. (2018) Second Law of Quantum Complexity. Physical Review D, 97, Article 086015.
https://doi.org/10.1103/physrevd.97.086015
[8]  Nye, L. (2025) Quantum Circuit Complexity as a Physical Observable. Journal of Applied Mathematics and Physics, 13, 87-137.
https://doi.org/10.4236/jamp.2025.131004
[9]  Lloyd, S. (2000) Ultimate Physical Limits to Computation. Nature, 406, 1047-1054.
https://doi.org/10.1038/35023282
[10]  Nielsen, M.A. (2006) A Geometric Approach to Quantum Circuit Lower Bounds. Quantum Information and Computation, 6, 213-262.
https://doi.org/10.26421/qic6.3-2
[11]  Atiyah, M. (1988) Topological Quantum Field Theories. Publications Mathématiques de lIHÉS, 68, 175-186.
https://doi.org/10.1007/bf02698547
[12]  Ashtekar, A. and Schilling, T.A. (1995). Geometry of Quantum Mechanics. AIP Conference Proceedings, 342, 471-478.
https://doi.org/10.1063/1.48786
[13]  Lurie, J. (2009) Higher Topos Theory. Annals of Mathematics Studies. Princeton University Press.
[14]  Douglas, M.R. (2001) D-branes, Categories and N = 1 Supersymmetry. Journal of Mathematical Physics, 42, 2818-2843.
https://doi.org/10.1063/1.1374448
[15]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press.
[16]  Reed, M. and Simon, B. (1972) Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press.
[17]  Witten, E. (1989) Quantum Field Theory and the Jones Polynomial. Communications in Mathematical Physics, 121, 351-399.
https://doi.org/10.1007/bf01217730
[18]  Candelas, P., De La Ossa, X.C., Green, P.S. and Parkes, L. (1991) A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory. Nuclear Physics B, 359, 21-74.
https://doi.org/10.1016/0550-3213(91)90292-6
[19]  Joyce, D. (2007) Riemannian Holonomy Groups and Calibrated Geometry. Oxford Graduate Texts in Mathematics. Oxford University Press.
[20]  McLean, R.C. (1998) Deformations of Calibrated Submanifolds. Communications in Analysis and Geometry, 6, 705-747.
https://doi.org/10.4310/cag.1998.v6.n4.a4
[21]  Hitchin, N. (1997) The Moduli Space of Special Lagrangian Submanifolds. Annali della Scuola Normale Superiore di Pisa, 25, 503-515.
[22]  Gross, M. and Siebert, B. (2011) From Real Affine Geometry to Complex Geometry. Annals of Mathematics, 174, 1301-1428.
https://doi.org/10.4007/annals.2011.174.3.1
[23]  Morrison, D. (1997) Mathematical Aspects of Mirror Symmetry. In: IAS/Park City Mathematics Series, American Mathematical Society, 265-340.
https://doi.org/10.1090/pcms/003/05
[24]  Aspinwall, P.S., Greene, B.R. and Morrison, D.R. (1993) Multiple Mirror Manifolds and Topology Change in String Theory. Physics Letters B, 303, 249-259.
https://doi.org/10.1016/0370-2693(93)91428-p
[25]  Witten, E. (1993) Phases of N = 2 Theories in Two Dimensions. Nuclear Physics B, 403, 159-222.
https://doi.org/10.1016/0550-3213(93)90033-l
[26]  Schmid, W. (1973) Variation of Hodge Structure: The Singularities of the Period Mapping. Inventiones Mathematicae, 22, 211-319.
https://doi.org/10.1007/bf01389674
[27]  Deligne, P. (1995) Déformations de l'Algèbre des Fonctions d’une Variété Symplectique. Selecta Mathematica, 1, 667-697.
https://doi.org/10.1007/bf01587907
[28]  Witten, E. (2018) A New Look at the Path Integral of Quantum Mechanics. Surveys in Differential Geometry, 23, 271-349.
[29]  Hull, C.M. (2007) Generalised Geometry for M-Theory. Journal of High Energy Physics, 2007, JHEP07(2007).
https://doi.org/10.1088/1126-6708/2007/07/079.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133