|
基于强化学习行为模型(RLBM)的教学探索——以Python语言程序设计为例
|
Abstract:
随着信息技术的飞速发展,Python语言的学习愈发关键,但其传统教学模式在培育学生实践能力上渐显乏力。本研究通过剖析传统教学的弊端,梳理国内外关于Python语言教学改革的成果,提出了基于强化学习行为模型(RLBM)行为模式的教学改革思路。RLBM由:智能体(agent)、环境(environment)、动作(action)和奖励(reward)四大核心要素构成,学生通过不断试错,依据环境反馈的奖励信号来学习最优策略。该教学方法在四川大学锦江学院进行了教学实践,结果表明,此方法极大提升了教学成效、并有效激发了学生自主学习能力,为程序设计类课程教学改革提供创新性的思路与实践参考。
With the rapid development of information technology, learning the Python language has become increasingly crucial. However, the traditional teaching model is gradually showing its inadequacy in cultivating students’ practical abilities. This research analyzes the drawbacks of traditional teaching, sorts out the achievements of Python language teaching reform both at home and abroad, and puts forward the ideas for teaching reform based on the behavior mode of the Reinforcement Learning Behavior Model (RLBM). The RLBM consists of five core elements: agent, environment, state, action, and reward. Students learn the optimal strategies by constantly making trial-and-error attempts and relying on the reward signals fed back by the environment. This teaching method has been implemented in teaching practice at Jinjiang College of Sichuan University. The results show that this method has significantly improved teaching effectiveness and effectively stimulated students’ autonomous learning ability, providing innovative ideas and practical references for the teaching reform of programming courses.
[1] | Spady, W. (1995) Outcomes-Based Education: Critical Issues. American Association of School Administrators. |
[2] | 夏泉永, 赵肖红. OBE视域下开放教育学习范式: 特征、价值及实施路径[J]. 宁波开放大学学报, 2023, 21(3): 13-17. |
[3] | 徐辉, 杨珣艺. 迈向教育“新征程”: 美国斯坦福大学数字人文教育的内容与支撑平台[J]. 外国教育研究, 2024, 51(7): 82-99. |
[4] | 易翠平, 谭洪卓, 方忠祥. 澳大利亚高校科教融合的科研体系与食品研究生培养——以墨尔本大学为例[J]. 粮油食品科技, 2025, 33(1): 32-38. |
[5] | 聂鹏. “OBE+混合一流”教学模式研究与实践——以国家级混合式一流课程“Web服务与RESTful技术”为例[J]. 职业技术, 2025, 24(1): 80-88. |
[6] | 方灿灿. “OBE+艾宾浩斯遗忘曲线”模式下智慧课堂教学模式研究——以现代汉语课程为例[J]. 海南开放大学学报, 2024, 25(4): 73-79. |
[7] | 王博. 基于互联网+OBE理念下面向机械电子工程专业实践与理论课程改革探索[J]. 科技风, 2024(36): 34-36. |
[8] | 秦华妮. 融合OBE理念的数据分析与挖掘课程案例教学探索[J]. 高教学刊, 2024, 10(36): 139-142+146. |
[9] | 季薇, 吴晓欢, 刘子威, 等. 基于思政与OBE理念融合的数字信号处理课程建设[J]. 高教学刊, 2024, 10(36): 36-39. |
[10] | 施炯, 李君. 面向工程教育认证的物联网工程专业课程体系构建[J]. 宁波工程学院学报, 2022, 34(1): 103-108. |
[11] | 王琳, 刘军利, 尚虹宇, 等. 基于产教融合的物联网专业实践教学创新模式探索[J]. 计算机教育, 2022(2): 67-72+78. |
[12] | 范茜莹, 姚琳, 崔晓龙. 面向个性化编程能力培养的Python教学模式探索[J]. 计算机教育, 2024(12): 182-187. |
[13] | 孙漫娜. 场域理论视角下高职商务英语个性化教学策略研究[J]. 科教文汇, 2024(24): 153-156. |
[14] | 孙佩娟. 面向个性化教学的高校计算机类公共基础课程改革研究[J]. 信息系统工程, 2024(12): 153-156. |
[15] | 谭雯, 胡越, 朱晓丹. 基于个性化学习视角的高职课程精准教学模式构建研究——以H高职院校财务大数据分析课程为例[J]. 中国管理信息化, 2024, 27(24): 116-118. |
[16] | 冯祖扬. AIGC有效促进个性化学习的信息科技教学实践[J]. 中国信息技术教育, 2024(23): 78-80. |
[17] | 刘晓文. 芬兰教育集群“异质分组教学”模式的教育理念、实践特征及其对我国美术教学的启示[J]. 西北美术, 2024(2): 92-98. |
[18] | Forbes (2024) Khan Academy SAT Preparation Success Points to Post-SAT Future. https://www.forbes.com/sites/rayravaglia/2024/11/26/khan-academy-sat-preparation-success-points-to-post-sat-future/, 2025-01-17. |